Polysaccharide depolymerase, a polysaccharide hydrolase encoded by bacteriophages (or 'phages'), can specifically degrade the macromolecule carbohydrates of the host bacterial envelope. This enzyme assists the bacteriophage in adsorbing, invading, and disintegrating the host bacteria. Polysaccharide depolymerase activity continues even within biofilms. This effectiveness means phages are promising candidates for novel antibiotic scaffolds. A comprehensive compendium of bacteriophage polysaccharide depolymerases has been compiled, together with their potential biomedical applications, such as novel antibiotics, adjuvants for antibiotics, bacterial biofilm disruptants, and diagnostic kits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40259-013-0081-y | DOI Listing |
Unlabelled: Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti- phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ∼50,000 cells from cultures of a human pathobiont, infected with a lytic bacteriophage.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia.
The emergence of multidrug-resistant hypervirulent (hvKp) has made it difficult to treat and control infections caused by this bacterium. Previously, the therapeutic effectiveness of phage-encoded depolymerase Dep_kpv74 in a mouse model of -induced thigh soft tissue infection was reported. In this study, the effect of Dep_kpv74 on blood parameters in mice, the proliferation and subpopulation composition of spleen lymphocytes, and the activity and stability of the enzyme at different pH and temperatures were further explored.
View Article and Find Full Text PDFPLoS Biol
January 2025
Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.
View Article and Find Full Text PDFVet Res
January 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
Avian coccidiosis, caused by the protozoan Eimeria, leads to significant economic losses for the poultry industry. In this study, bacteriophages that specifically bind to the calcium-binding protein (EtCab) of Eimeria tenella were selected using a biopanning process with a pIII phage display library. The recombinant EtCab protein served as the ligand in this selection process.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!