In this paper we demonstrate that layer-by-layer (LbL) films of polyamidoamine (PAMAM) dendrimers and single-walled carbon nanotubes (SWCNTs) are efficient for controlling the morphology of electrogenerated cobalt (Co) and the platinum-cobalt (PtCo) alloy. While Co grew to the micrometer scale and poorly covered the ITO substrate, with the LbL matrix it was kept in the nanoscale regime and provided full substrate coverage. Pt-decorated Co nanoparticles were then generated by applying a single potential pulse in a solution containing simultaneously Co and Pt ions. Segregation of Pt and Co deposits was observed in field emission gun (FEG) images, but the PtCo alloy was probably formed to some extent according to X-ray diffraction analysis. The PtCo-LbL hybrid exhibited superior catalytic activity toward H2O2 reduction compared to the Pt-modified LbL film, which opens new prospects for applications in biosensing and fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp54296cDOI Listing

Publication Analysis

Top Keywords

ptco alloy
8
dendrimer-carbon nanotube
4
nanotube layer-by-layer
4
layer-by-layer film
4
film efficient
4
efficient host
4
host matrix
4
matrix electrogeneration
4
electrogeneration ptco
4
ptco electrocatalysts
4

Similar Publications

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Low-temperature direct ammonia fuel cell (DAFC) stands out as a more secure technology than the hydrogen fuel cell system, while there is still a lack of elegant bottom-up synthesis procedures for efficient ammonia oxidation reaction (AOR) electrocatalysts. The widely accepted d-band center, even with consideration of the d-band width, usually fails to describe variations in AOR reactivity in many practical conditions, and a more accurate activity descriptor is necessary for a less empirical synthesis path. Herein, the upper d-band edge, ε, derived from the d-band model, is identified as an effective descriptor for accurately establishing the descriptor-activity relationship.

View Article and Find Full Text PDF

It is a great challenge to prepare efficient and stable electrocatalysts for hydrogen evolution (HER) using non-precious metals. In this study, a series of PtCo/TiCT-Y (Y: 16, 32, and 320, Y indicates the quality of Co(NO)) catalysts were synthesized by loading PtCo alloy on TiCT. The PtCo/TiCT-32 catalyst showed the best HER performance, reaching a current density of 10 mA cm with low overpotential (36 and 101 mV) and small Tafel slopes (66.

View Article and Find Full Text PDF

2D Carbon-Anchored Platinum-Based Nanodot Arrays as Efficient Catalysts for Methanol Oxidation Reaction.

Small Methods

December 2024

Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.

Article Synopsis
  • Ultrafine Pt-based alloy nanoparticles supported on carbon are promising for catalysis but struggle with stability issues that limit their use.
  • A new approach uses nanodot arrays where these nanoparticles are securely implanted in a 2D carbon substrate, leading to high methanol oxidation reaction activity and improved stability.
  • This innovative anchoring method optimizes their electronic structure, reduces nanoparticle migration, and prevents transition metal dissolution, paving the way for more durable and effective catalytic materials.
View Article and Find Full Text PDF

Atomically ordered intermetallic Pt-based nanoparticles, recognized as advanced electrocatalysts, exhibit superior activity for the oxygen reduction reaction (ORR) in fuel cell cathodes. Nevertheless, the formation of these ordered structures typically necessitates elevated annealing temperatures, which can accelerate particle growth and diminished reactivity. In this study, we synthesized carbon-supported platinum-cobalt intermetallic compounds (PtCo-IMCs) with sub-4 nm particle sizes and uniform distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!