The human natural killer-1 (HNK-1) carbohydrate comprising a sulfated trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc-) is expressed on N-linked and O-mannose-linked glycans in the nervous system and involved in learning and memory functions. Although whole/core glycan structures and carrier glycoproteins for the N-linked HNK-1 epitope have been studied, carrier glycoproteins and the biosynthetic pathway of the O-mannose-linked HNK-1 epitope have not been fully characterized. Here, using mass spectrometric analyses, we identified the major carrier glycoprotein of the O-linked HNK-1 as phosphacan in developing mouse brains and determined the major O-glycan structures having the terminal HNK-1 epitope from partially purified phosphacan. The O-linked HNK-1 epitope on phosphacan almost disappeared due to the knockout of protein O-mannose β1,2-N-acetylglucosaminyltransferase 1, an N-acetylglucosaminyltransferase essential for O-mannose-linked glycan synthesis, indicating that the reducing terminal of the O-linked HNK-1 is mannose. We also showed that glucuronyltransferase-P (GlcAT-P) was involved in the biosynthesis of O-mannose-linked HNK-1 using the gene-deficient mice of GlcAT-P, one of the glucuronyltransferases for HNK-1 synthesis. Consistent with this result, we revealed that GlcAT-P specifically synthesized O-linked HNK-1 onto phosphacan using cultured cells. Furthermore, we characterized the as-yet-unknown epitope of the 6B4 monoclonal antibody (mAb), which was thought to recognize a unique phosphacan glycoform. The reactivity of the 6B4 mAb almost completely disappeared in GlcAT-P-deficient mice, and exogenously expressed phosphacan was selectively recognized by the 6B4 mAb when co-expressed with GlcAT-P, suggesting that the 6B4 mAb preferentially recognizes O-mannose-linked HNK-1 on phosphacan. This is the first study to show that 6B4 mAb-reactive O-mannose-linked HNK-1 in the brain is mainly carried by phosphacan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/glycob/cwt116 | DOI Listing |
J Immunother Cancer
August 2022
Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
Background: A growing body of evidence suggests that T-cell responses against neoantigens are critical regulators of response to immune checkpoint blockade. We previously showed that circulating neoantigen-specific CD8 T cells in patients with lung cancer responding to anti-Programmed death-ligand 1 (PD-L1) (atezolizumab) exhibit a unique phenotype with high expression of CD57, CD244, and KLRG1. Here, we extended our analysis on neoantigen-specific CD8 T cells to patients with metastatic urothelial cancer (mUC) and further profiled total CD8 T cells to identify blood-based predictive biomarkers of response to atezolizumab.
View Article and Find Full Text PDFStem Cell Rev Rep
December 2022
Neuroregeneration Research Institute, McLean Hospital/ Harvard Medical School, Belmont, MB, USA.
The neural crest gives rise to progeny as diverse as peripheral neurons, myelinating cells, cranial muscle, bone and cartilage tissues, and melanocytes. Neural crest derivation encompasses complex morphological change, including epithelial-to-mesenchymal transition (EMT) and migration to the eventual target locations throughout the body. Neural crest cultures derived from stem cells provide an attractive source for developmental studies in human model systems, of immediate biomedical relevance for neurocristopathies, neural cancer biology and regenerative medicine, if only appropriate markers for lineage and cell type definition and quality control criteria were available.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
February 2022
From the Université Paris Est Créteil, INSERM, IMRB, Equipe Relaix, Creteil, France.
Phenotyping intramuscular immune cells is essential for the characterization of dysimmune/inflammatory myopathies (DIM). Flow cytometry (FC) is the most reliable technique for analyzing leukocyte subpopulations and evaluating their activation levels. We developed a purely mechanical protocol for extracting cells from muscle tissue allowing us to preserve cell surface epitopes and determined its applicability to experimental pathology in mice and myopathological diagnosis in human.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!