Simultaneously measured absorption (ABS) and magnetic circular dichroism (MCD) spectra of the Q-bands of chlorophyll-a (Chl-a) in ether over 150-186 K reveal that the species that forms at low temperature is a chlorophyll hydrate rather than a diether complex. We have recently proposed a new assignment paradigm for the spectra of chlorophillides which, for the first time, quantitatively accounts for a wide range of observed data. Observations performed at low temperature in ether have historically been very important for the interpretation of the spectra of Chl-a. While our assignment for this system initially anticipated only small spectral changes as the temperature is lowered, significant changes are known to occur. Extensive CAM-B3LYP time-dependent density-functional theory (TD-DFT) calculations verify that the observed spectra of the hydrated species conforms to expectations based on our new assignment, as well as supporting the feasibility of the proposed hydration reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp53729cDOI Listing

Publication Analysis

Top Keywords

low temperature
12
formation water-chlorophyll
4
water-chlorophyll clusters
4
clusters dilute
4
dilute samples
4
samples chlorophyll-a
4
chlorophyll-a ether
4
ether low
4
temperature
4
temperature simultaneously
4

Similar Publications

A vision model for automated frozen tuna processing.

Sci Rep

January 2025

School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.

Accurate and rapid segmentation of key parts of frozen tuna, along with precise pose estimation, is crucial for automated processing. However, challenges such as size differences and indistinct features of tuna parts, as well as the complexity of determining fish poses in multi-fish scenarios, hinder this process. To address these issues, this paper introduces TunaVision, a vision model based on YOLOv8 designed for automated tuna processing.

View Article and Find Full Text PDF

The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.

View Article and Find Full Text PDF

Global food production predominantly depends on a limited number of cereal crops; however, numerous other crops have the potential to support the nutrition and economy of many local communities in developing countries. The different crop species characterized as having relatively low perceived economic importance or agricultural significance are known as underutilized crops. Millet is one of the underutilized crops with significant potential to address nutrient and hunger-related challenges in many developing countries like Nepal due to its versatility and climate resilience.

View Article and Find Full Text PDF

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

Green preparation of highly transparent nano-NH-UiO(Zr)-66/cellulose composite films with high-strength, superior flame retardant and UV to high-energy blue light shielding performance.

Int J Biol Macromol

January 2025

Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!