Synaptic receptors are allosteric proteins that switch on and off to regulate cell signalling. Here, we use single-channel electrophysiology to measure and map energy changes in the gating conformational change of a nicotinic acetylcholine receptor. Two separated regions in the α-subunits--the transmitter-binding sites and αM2-αM3 linkers in the membrane domain--have the highest ϕ-values (change conformation the earliest), followed by the extracellular domain, most of the membrane domain and the gate. Large gating-energy changes occur at the transmitter-binding sites, α-subunit interfaces, the αM1 helix and the gate. We hypothesize that rearrangements of the linkers trigger the global allosteric transition, and that the hydrophobic gate unlocks in three steps. The mostly local character of side-chain energy changes and the similarly high ϕ-values of separated domains, both with and without ligands, suggest that gating is not strictly a mechanical process initiated by the affinity change for the agonist.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407639 | PMC |
http://dx.doi.org/10.1038/ncomms3984 | DOI Listing |
Sci Rep
December 2024
Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China.
Mitochondria are pivotal in cellular energy metabolism and have garnered significant attention for their roles in cancer progression and therapy resistance. Despite this, the functional diversity of mitochondria across various cancer types remains inadequately characterized. This study seeks to fill this knowledge gap by introducing and validating MitoScore-a novel metric designed to quantitatively assess mitochondrial function across a wide array of cancers.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.
View Article and Find Full Text PDFSci Rep
December 2024
School of Public Administration, Guangzhou University, Guangzhou, 510006, China.
The randomness and volatility of existing clean energy sources have increased the complexity of grid scheduling. To address this issue, this work proposes an artificial intelligence (AI) empowered method based on the Environmental, Social, and Governance (ESG) big data platform, focusing on multi-objective scheduling optimization for clean energy. This work employs a combination of Particle Swarm Optimization (PSO) and Deep Q-Network (DQN) to enhance grid scheduling efficiency and clean energy utilization.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
A thermochromic pigment, derived from reaction of ethylenediamine and rhodamine B known as MA-RB, has been successfully developed. This pigment showcases temperature-controlled visible color-transformation properties in both solid and solution states. The thermochromic pigment MA-RB exhibits a notable color change from light pink to rose red, triggered by thermal excitation.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electronic Engineering, National University of Defense Technology, Hefei, 230000, China.
Spectrum sensing is a key technology and prerequisite for Transform Domain Communication Systems (TDCS). The traditional approach typically involves selecting a working sub-band and maintaining it without further changes, with spectrum sensing being conducted periodically. However, this approach presents two main issues: on the one hand, if the selected working band has few idle channels, TDCS devices are unable to flexibly switch sub-bands, leading to reduced performance; on the other hand, periodic sensing consumes time and energy, limiting TDCS's transmission efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!