IGF-1 regulates the metabolism of hard dental tissue through binding to the IGF-1 receptor on target cells. Furthermore, IGF-binding-protein-3 promotes the accessibility of IGF-1. The aim of this study was to investigate the expression of IGF-1, IGFBP-3 and IGF-1R in STRO-1-positive dental pulp stem cells (DPSCs) and fully impacted wisdom teeth in relation to tooth development. Third molars were surgically removed from 60 patients and classified into two groups: teeth showing ongoing development (group 1) and teeth that had completed root shaping (group 2). The transcript and protein levels of IGF-1, IGFBP-3 and IGF-1R were investigated using RT-PCR and immunohistochemistry. The expression of the same proteins was also analyzed in DPSCs. The teeth from group 1 showed significantly stronger expression of IGF-1 and IGF-1R. The major sources of all of the proteins investigated immunohistochemically in sections of wisdom teeth were odontoblasts, cementoblasts and cell colonies in the pulpal mesenchyme. These colonies were identified as stem cells in view of their positivity for STRO-1, and the cells were subsequently sorted by flow cytometry. These DPSCs demonstrated high levels of pluripotency markers and IGF-1 and IGF-1R. We conclude that members of the IGF-1 family are involved in the late stage of tooth development and the process of pulpal differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2334/josnusd.55.319 | DOI Listing |
J Ovarian Res
January 2025
Department of Urology, Zigong Fourth People's Hospital, Zigong, Sichuan, China.
Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.
View Article and Find Full Text PDFBackground: Acromegaly, although rare, is associated with multiple manifestations and complications; its high morbidity and mortality makes it a challenge. Treatment involves surgery and pharmacological therapies, focusing on biochemical normalization. This study analyzes the biochemical control in Colombian patients with acromegaly, seeking to improve the understanding of the effects of treatments in the management of the disease.
View Article and Find Full Text PDFJ Food Sci
January 2025
Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.
Oolong tea, a popular traditional Chinese tea, possesses various bioactivities, but little is known about its roles in the protection against pathogens, such as Staphylococcus aureus, in vivo. This study investigated the roles of the water-soluble oolong tea extracts (OTE) on S. aureus infection in Caenorhabditis elegans, a promising model to study the host-microbe interactions in vivo.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2024
Curtin University, Curtin Medical Research Institute (Bentley, WA, AUSTRALIA).
Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.
View Article and Find Full Text PDFMol Med Rep
March 2025
Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!