Individual ventilated cages (IVC) are increasing in popularity. Although mice avoid IVC in preference testing, they show no aversion when provided additional nesting material or the cage is not ventilated. Given the high ventilation rate in IVC, we developed 3 hypotheses: that mice housed in IVC experience more cold stress than do mice housed in static cages; that IVC-induced cold stress affects the results of experiments using mice; and that, when provided shelters, mice behaviorally thermoregulate and thereby rescue the cold-stress effects of IVC. To test these hypotheses, we housed mice in IVC, IVC with shelters, and static cages maintained at 20 to 21 °C. We quantified the cold stress of each housing system on mice by assessing nonshivering thermogenesis and brown adipose vacuolation. To test housing effects in a common, murine model of human disease, we implanted mice with subcutaneous epidermoid carcinoma cells and quantified tumor growth, tumor metabolism, and adrenal weight. Mice housed in IVC had histologic signs of cold stress and significantly higher nonshivering thermogenesis, smaller subcutaneous tumors, lower tumor metabolism, and larger adrenal weights than did mice in static cages. Shelters rescued IVC-induced nonshivering thermogenesis, adrenal enlargement, and phenotype-dependent cold-mediated histologic changes in brown adipose tissue and tumor size. IVC impose chronic cold stress on mice, alter experimental results, and are a source of systemic confounders throughout rodent-dependent research. Allowing mice to exhibit behavioral thermoregulation through seeking shelter markedly rescues the experiment-altering effects of housing-imposed cold stress, improves physiologic uniformity, and increases experimental reproducibility across housing systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838608 | PMC |
Plant Cell Environ
December 2024
Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
Low temperature is a limiting environmental factor for tea plant growth and development. CBL-interacting protein kinases (CIPKs) are important components of the calcium pathway and involved in plant development and stress responses. Herein, we report the function and regulatory mechanisms of a low-temperature-inducible gene, CsCIPK20, in tea plants.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China.
PLATZ (plant A/T-rich protein and zinc-binding protein) transcription factors are essential for plant growth, development, and responses to abiotic stress. The regulatory role of PLATZ genes in the environmental adaptation of D. huoshanense is inadequately comprehended.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:
Drought and cold crucially affect plant growth and distribution. Plants have evolved complex molecular mechanisms to adapt to such adverse environmental conditions. This study examines two Elymus sibiricus (Es) germplasms differing in resilience to these stresses.
View Article and Find Full Text PDFNeuroscience
December 2024
Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:
Corticotropin-releasing factor (CRF) is an important stress hormone, and because of the different distributions and functions of its receptors, CRF has various effects on the stress response of animals. CRF receptor 2 (CRFR2) is functional receptor of CRF that may be related to appetite regulation and sex differences. In this study, male and female C57BL/6 mice were exposed to an ambient temperature of 4 °C, and feed intake were determined.
View Article and Find Full Text PDFSci Rep
December 2024
National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!