Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
K-RAS mutated (K-RASmut) non-small cell lung cancer (NSCLC) cells are resistant to EGFR targeting strategies. We investigated the impact of K-RAS activity irrespective of mutational status in the EGFR-independent increase in clonogenic cell survival. An analysis of the K-RAS activity status revealed a constitutively high K-RAS activity in K-RASmut NSCLC cells and also in head and neck squamous cell carcinoma (HNSCC) cells overexpressing wild-type K-RAS (K-RASwt). Similar to K-RAS-mutated cells, increased K-RAS activity in HNSCC cells overexpressing K-RASwt was associated with the stimulated production of the EGFR ligand amphiregulin and resistance to EGFR tyrosine kinase (EGFR-TK) inhibitors such as erlotinib. Expression of mutated K-RAS stimulated Akt phosphorylation and increased plating efficiency. Conversely, knockdown of K-RAS in K-RASmut NSCLC cells and in HNSCC cells presenting overexpression of K-RASwt resulted in sensitization to the anti-clonogenic activity of erlotinib. K-RAS activity results in EGFR-dependent and EGFR-independent Akt activity. The short-term treatment (2 h) of cells with EGFR-TK or PI3K inhibitors (erlotinib and PI-103) resulted in the repression of Akt activation, whereas long-term treatment (24 h) with inhibitors led to the reactivation of Akt and improved clonogenicity. The Akt re-activation was MAPK-ERK2-dependent and associated with a lack of complete response to anti-clonogenic activity of PI-103. A complete response was observed when PI-103 was combined with MEK inhibitor PD98059. Together, clonogenicity inhibition in tumor cells presenting constitutive K-RAS activity independent of K-RAS mutational status can be achieved by targeting of EGFR downstream pathways, i.e., PI3K alone or the combination of PI3K and MAPK inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3974833 | PMC |
http://dx.doi.org/10.4161/cbt.27311 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!