The pollution trend of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the Baltic Sea region was studied based on depth profiles of PCDD/Fs in sediment cores collected from six offshore areas, eight coastal sites impacted by industrial/urban emissions, and one coastal reference site. A general trend was observed for the offshore and coastal reference sites with substantial increase in PCDD/F concentrations in the mid-late 1970s and peak levels during 1985-2002. The overall peak year for PCDD/Fs in Baltic Sea offshore areas was estimated (using spline-fit modeling) to 1994 ± 5 years, and a half-life in sediments was estimated at 29 ± 11 years. For the industrial/urban impacted coastal sites, the temporal trend was more variable with peak years occurring 1-2 decades earlier compared to offshore areas. The substantial reductions from peak levels (38 ± 11% and 81 ± 12% in offshore and coastal areas, respectively) reflect domestic and international actions taken for reduction of the release of PCDD/Fs to the environment. The modeled overall half-life and reductions of PCDD/Fs in offshore Baltic Sea sediment correspond well to both PCDD/F trends in European lakes without any known direct PCDD/F sources (half-lives 30 and 32 years), and previously modeled reduction in atmospheric deposition of PCDD/Fs to the Baltic Sea since 1990. These observations support previous findings of a common diffuse source, such as long-range air transport of atmospheric emissions, as the prime source of PCDD/Fs to the Baltic Sea region. The half-life of PCDD/Fs in Baltic Sea offshore sediments was estimated to be approximately 2 and 4-6 times longer than in semirural and urban European air, respectively. This study highlights the need for further international actions to reduce the levels of PCDD/Fs in Baltic Sea air specifically and in European air in general.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es404599zDOI Listing

Publication Analysis

Top Keywords

baltic sea
32
pcdd/fs baltic
28
offshore areas
12
pcdd/fs
10
baltic
8
sea
8
sea sediment
8
sediment cores
8
sea region
8
coastal sites
8

Similar Publications

Tan spot caused by is a severe threat to wheat production in all major wheat-growing regions. Sustainable tan spot control can be achieved by an integrated approach, including responsible management of fungicide sprays. The data about the sensitivity of to various fungicides in the Baltic Sea region are rare.

View Article and Find Full Text PDF

In this study, the results of a comprehensive assessment of the variability in the occurrence of ten perfluorinated compounds (PFAS) in fish tissues originating from 2014 to 2019 from six fisheries in the Baltic Sea are presented. A total of 360 fish samples of three species (perch, herring and flatfish) were analysed. For the determination of PFAS, both linear and branched stereoisomers, LC-ESI-MS/MS technique preceded by simultaneous SPE isolation was validated and applied.

View Article and Find Full Text PDF

Dynamics of spp. Biomass and Environmental Variability: A Case Study in the Neva Estuary (The Easternmost Baltic Sea).

Biology (Basel)

November 2024

Zoological Institute of Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint-Petersburg, Russia.

Predicting which non-indigenous species (NISs) will establish persistent invasive populations and cause significant ecosystem changes remains an important environmental challenge. We analyzed the spatial and temporal dynamics of the entire zoobenthos and the biomass of spp., one of the most successful invaders in the Baltic Sea, in the Neva estuary in 2014-2023.

View Article and Find Full Text PDF

Dormancy is a wide-spread key life history trait observed across the tree of life. Many plankton species form dormant cells stages that accumulate in aquatic sediments and under anoxic conditions, form chronological records of past species and population dynamics under changing environmental conditions. Here we report on the germination of a microscopic alga, the abundant marine diatom Skeletonema marinoi that had remained dormant for up to 6871 ± 140 years in anoxic sediments of the Baltic Sea and resumed growth when exposed to oxygen and light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!