Water confinement in the hydrophobic nanopores of highly siliceous zeolite having MFI and CHA topology is investigated by high pressure manometry coupled to differential calorimetry. Surprisingly, the intrusion of water is endothermic for MFI but exothermic for CHA. This phase transition depends on the geometry of the environment in which water is confined: channels (MFI) or cavities (CHA). The energy of intrusion is mainly governed by the change in the coordination of water molecules when they are forced to enter the nanopores and to adopt a weaker, hydrogen-bonded structure. At such a nanoscale, the properties of the molecules are governed strongly by geometrical restraints. This implies that the use of classical macroscopic equations such as Laplace-Washburn will have limitations at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la4043183DOI Listing

Publication Analysis

Top Keywords

hydrophobic nanopores
8
energy intrusion
8
intrusion water
8
confinement water
4
water hydrophobic
4
nanopores geometry
4
geometry energy
4
water
4
water confinement
4
confinement hydrophobic
4

Similar Publications

Hydroxylation, an extensive post-translational modification on proline, is critical for the modulation of protein structures, further dominating their functions in life systems. However, current mass spectrometry-based identification, could hardly distinguish hydroxylation from neighboring oxidation due to the same mass shifts, as well as challenges posed by low abundance and exogenous oxidation during sample preparation. To address these, an engineered nanopore was designed, capable of discriminating single hydroxyl group, to achieve the identification of proline hydroxylation on individual native peptides directly in the mixture.

View Article and Find Full Text PDF

Highly efficient and convenient QuEChERS using ZIF-67 derived magnetic nanoporous carbon for determination of carbamate pesticides in various vegetable and fruit samples.

Food Chem

January 2025

School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China. Electronic address:

Effective and convenient QuEChERS of lipophilic pesticides with wide pK range from strongly pigment-rich food samples remains a great challenge. Here, a ZIF-67 derived magnetic nanoporous carbon (Co@MPC) was firstly proposed for modified QuEChERS of carbamate pesticides (pK 4.3-12.

View Article and Find Full Text PDF

Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant.

Mater Horiz

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.

Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.

View Article and Find Full Text PDF

Hierarchical Biogenic-Based Thermal Insulation Foam.

ACS Nano

January 2025

Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.

Biogenic-based foam, renowned for its sustainable and eco-friendly properties, is emerging as a promising thermal insulating material with the potential to significantly enhance energy efficiency and sustainability in building applications. However, its relatively high thermal conductivity, large-pore configurations, and energy-intensive manufacturing processes hinder its widespread use. Here, we report on the scalable, one-pot synthesis of biogenic foams achieved by integrating recycled paper pulp and in situ nanoporous silica formation, resulting in a hierarchical structure comprising both micropores and nanopores.

View Article and Find Full Text PDF

Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!