Immunoglobulin light chain amyloidosis.

Expert Rev Hematol

Department of Molecular Medicine, University of Pavia, Foundation Scientific Institute San Matteo, Amyloidosis Research and Treatment Center, V.le Golgi 19 27100, Pavia, Italy.

Published: February 2014

Primary light chain amyloidosis is the most common form of systemic amyloidosis and is caused by misfolded light chains that cause proteotoxicity and rapid decline of vital organ function. Early diagnosis is essential in order to deliver effective therapy and prevent irreversible organ damage. Accurate diagnosis requires clinical skills and advanced technologies. The disease can be halted and the function of target organs preserved by the prompt reduction and elimination of the plasma cell clone producing the toxic light chains in the bone marrow. Heart damage is the major determinant of survival, and staging with cardiac biomarkers guides treatment. Two-thirds of patients can benefit from treatment with improved quality of life and extended survival. Future efforts should be directed at early diagnosis, improving the tolerability and efficacy of anti-plasma cell therapy, accelerating recovery of organ function via promoting resorption of amyloid deposits, and developing novel approaches to counter light chain proteotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1586/17474086.2014.858594DOI Listing

Publication Analysis

Top Keywords

light chain
12
chain amyloidosis
8
light chains
8
organ function
8
early diagnosis
8
immunoglobulin light
4
amyloidosis primary
4
light
4
primary light
4
amyloidosis common
4

Similar Publications

The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.

Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.

Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.

View Article and Find Full Text PDF

Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and ,-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh, 2-octenylsuccinic acid (OSA), and itaconic acid (IA) bearing an exomethylene group for polymerization. OSA was a chain extender by intermolecular condensation and a stopper by intramolecular cyclization to inhibit cross-linkage.

View Article and Find Full Text PDF

The processing of beans begins with a particularly time-consuming procedure, the hydration of the seeds. Ultrasonic treatment (US) represents a potential environmentally friendly method for process acceleration, while near-infrared spectroscopy (NIR) is a proposedly suitable non-invasive monitoring tool to assess compositional changes. Our aim was to examine the hydration process of red kidney beans of varying sizes and origins.

View Article and Find Full Text PDF

Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers.

View Article and Find Full Text PDF

Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!