Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels.

Environ Technol

Département de microbiologie et immunologie, Université de Montréal, CP 6128 Centre-Ville, Montréal, Quebec, Canada PQ H3C 3J7.

Published: January 2014

In order to ensure the sustainability of algal biofuel production, a number of issues need to be addressed. Previously, we reviewed some of the questions in this area involving algal species and the important challenges of nutrient supply and how these might be met. Here, we take up issues involving harvesting and the conversion ofbiomass to biofuels. Advances in both these areas are required if these third-generation fuels are to have a sufficiently high net energy ratio and a sustainable footprint. A variety of harvesting technologies are under investigation and recent studies in this area are presented and discussed. A number of different energy uses are available for algal biomass, each with their own advantages as well as challenges in terms of efficiencies and yields. Recent advances in these areas are presented and some of the especially promising conversion processes are highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2013.831487DOI Listing

Publication Analysis

Top Keywords

harvesting conversion
8
advances areas
8
addressing challenges
4
challenges sustainable
4
sustainable production
4
algal
4
production algal
4
algal biofuels
4
biofuels harvesting
4
conversion biofuels
4

Similar Publications

Strain-Reduced Inversion Symmetry in Ultrathin SnPSe Crystals for Giant Bulk Piezophotovoltaic Generation.

ACS Nano

January 2025

Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

With the potential to surpass the Shockley-Queisser (S-Q) limitation for solar energy conversion, the bulk photovoltaic (BPV) effect, which is induced by the broken inversion symmetry of the lattice, presents prospects for future light-harvesting technologies. However, the development of BPV is largely limited by the low solar spectrum conversion efficiency of existing noncentrosymmetric materials with wide band gaps. This study reports that the strain-induced reduction of inversion symmetry can enhance the second-order nonlinear susceptibility (χ) of SnPSe crystals by an order of magnitude, which contributes to an extremely high value of 1.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

Estimation of GHGs emission from traditional kilns charcoal production in northwestern Ethiopia: Implications on climate change.

Heliyon

December 2024

Center of Environment and Development, College of Development Studies, Addis Ababa University, Addis Ababa, P.O.Box 1176, Addis Ababa, Ethiopia.

Rural areas in Ethiopia serve as the primary source of charcoal for urban populations, mainly produced using traditional kilns. However, this traditional method significantly contributes to greenhouse gas (GHG) emissions, exacerbating climate change and deforestation. While banning charcoal production is not currently feasible in Ethiopia because of the lack of affordable alternative energy sources (fuel), improving the efficiency of the traditional production system can mitigate the climate impact caused by charcoal production.

View Article and Find Full Text PDF

High-Performance Thermoelectric Composite of BiTe Nanosheets and Carbon Aerogel for Harvesting of Environmental Electromagnetic Energy.

ACS Nano

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.

View Article and Find Full Text PDF

This perspective highlights the transformative potential of Metal-Organic Frameworks (MOFs) in environmental and healthcare sectors. It discusses work that has advanced beyond technology readiness levels of >4 including applications in capture, storage, and conversion of gases to value added products. This work showcases efforts in the most salient applications of MOFs which have been performed at a great cadence, enabled by the federal government, large companies, and startups to commercialize these technologies despite facing significant challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!