A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chiral chemicals as tracers of atmospheric sources and fate processes in a world of changing climate. | LitMetric

AI Article Synopsis

  • The elimination of persistent organic pollutants (POPs) through regulations reduces initial emissions, but leftover residues in the environment continue to cause secondary emissions.
  • Climate change impacts, such as rising temperatures and altered weather patterns, can mobilize these POPs from their stored locations, complicating their degradation and transport.
  • The study suggests using chiral compounds, which have unique properties, to better understand the movement and breakdown of POPs in relation to climate effects, highlighting findings from Canadian Arctic air monitoring that show seasonal variations in specific chiral POPs indicating weather-related source changes.

Article Abstract

Elimination of persistent organic pollutants (POPs) under national and international regulations reduces "primary" emissions, but "secondary" emissions continue from residues deposited in soil, water, ice and vegetation during former years of usage. In a future, secondary source controlled world, POPs will follow the carbon cycle and biogeochemical processes will determine their transport, accumulation and fate. Climate change is likely to affect mobilisation of POPs through e.g., increased temperature, altered precipitation and wind patterns, flooding, loss of ice cover in polar regions, melting glaciers, and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially degraded) sources. This paper discusses the rationale for this approach and suggests applications where chiral POPs could aid investigation of climate-mediated exchange and degradation processes. Multiyear measurements of two chiral POPs, trans-chlordane and α-HCH, at a Canadian Arctic air monitoring station show enantiomer compositions which cycle seasonally, suggesting varying source contributions which may be under climatic control. Large-scale shifts in the enantioselective metabolism of chiral POPs in soil and water might influence the enantiomer composition of atmospheric residues, and it would be advantageous to include enantiospecific analysis in POPs monitoring programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810459PMC
http://dx.doi.org/10.5702/massspectrometry.S0019DOI Listing

Publication Analysis

Top Keywords

soil water
12
chiral pops
12
pops
7
chiral
5
chiral chemicals
4
chemicals tracers
4
tracers atmospheric
4
atmospheric sources
4
sources fate
4
fate processes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!