A large body of research has aimed to determine the neurochemical factors driving differential sensitivity to ethanol between individuals in an attempt to find predictors of ethanol abuse vulnerability. Here we find that the locomotor activating effects of ethanol are markedly greater in DBA/2J compared to C57BL/6J mice, although it is unclear as to what neurochemical differences between strains mediate this behavior. Dopamine elevations in the nucleus accumbens and caudate-putamen regulate locomotor behavior for most drugs, including ethanol; thus, we aimed to determine if differences in these regions predict strain differences in ethanol-induced locomotor activity. Previous studies suggest that ethanol interacts with the dopamine transporter, potentially mediating its locomotor activating effects; however, we found that ethanol had no effects on dopamine uptake in either strain. Ex vivo voltammetry allows for the determination of ethanol effects on presynaptic dopamine terminals, independent of drug-induced changes in firing rates of afferent inputs from either dopamine neurons or other neurotransmitter systems. However, differences in striatal dopamine dynamics did not predict the locomotor-activating effects of ethanol, since the inhibitory effects of ethanol on dopamine release were similar between strains. There were differences in presynaptic dopamine function between strains, with faster dopamine clearance in the caudate-putamen of DBA/2J mice; however, it is unclear how this difference relates to locomotor behavior. Because of the role of the dopamine system in reinforcement and reward learning, differences in dopamine signaling between the strains could have implications for addiction-related behaviors that extend beyond ethanol effects in the striatum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861521 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083852 | PLOS |
Appl Microbiol Biotechnol
January 2025
Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.
RNA viruses have high genetic diversity, allowing rapid adaptation to environmental pressures, such as disinfection. This diversity increases the likelihood of mutations influencing the viral sensitivity to disinfectants. Ethanol is widely used to control viral transmission; however, insufficient disinfection facilitates the survival of less-sensitive viruses.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Science and Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
Supercritical CO modified by polar solvents can extract a wide variety of polar and non-polar chemical components compared to conventional methods. The current study aims to extract Rivas (Rheum ribes) flower using the ethanol modified supercritical CO (SCO-EOH) method; analyze its chemical compounds and bioactivity, encapsulate the extract in maltodextrin, gum-Arabic (GA), and their combination (GA + MD) using the spray drying method and investigate the differences among microparticles using Principal Component Analysis (PCA). The Rivas extract obtained by the SCO-EOH method was a rich source of unsaturated fatty acids (mainly linoleic acid: 57.
View Article and Find Full Text PDFJ Ginseng Res
January 2025
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
Background: Ginseng Berry Concentrate (GBC) enhances exercise capacity in mice, but the effects of its key component, ginsenoside Re (G-Re), on aging and mitochondrial function are not well understood. This study investigates the impact of G-Re on mitophagy and its potential to promote healthy aging.
Methods: Experiments in C2C12 myocytes and HeLa-mitoKeima-PARKIN cells assessed GBC and G-Re's effects on mitophagy, supported by Gene Set Enrichment Analysis.
J Ginseng Res
January 2025
Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea.
Background: Ginseng is processed into several types such as white ginseng, red ginseng, and black ginseng, according to the processing methods such as drying, steaming, and heating. These processing conditions can change the portion of the useful ingredients. Recently, new processing method was established to develop 'lymphanax', an aged fresh white ginseng prepared under anaerobic condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!