A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862677 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082240 | PLOS |
Mol Plant
January 2025
College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China. Electronic address:
Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.
View Article and Find Full Text PDFOncogene
January 2025
Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.
View Article and Find Full Text PDFEBioMedicine
January 2025
Institute of Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany. Electronic address:
Background: Aging increases disease susceptibility and reduces vaccine responsiveness, highlighting the need to better understand the aging immune system and its clinical associations. Studying the human immune system, however, remains challenging due to its complexity and significant inter-individual variability.
Methods: We conducted an immune profiling study of 550 elderly participants (≥60 years) and 100 young controls (20-40 years) from the RESIST Senior Individuals (SI) cohort.
J Mol Graph Model
January 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow Campus, India. Electronic address:
The Acinetobacter baumannii is a member of the "ESKAPE" bacteria responsible for many serious multidrug-resistant (MDR) illnesses. This bacteria swiftly adapts to environmental cues leading to the emergence of multidrug-resistant variants, particularly in hospital/medical settings. In this work, we have demonstrated the outer membrane protein 33-36 (Omp33-36) porin as a potential therapeutic target in A.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
January 2025
Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium.
Purpose: Mortality and morbidity of patients with bloodstream infection (BSI) remain high despite advances in diagnostic methods and efforts to speed up reporting. This study investigated the impact of reporting rapid Minimum Inhibitory Concentration (MIC)-results in Gram negative BSIs with the ASTar system (Q-linea, Uppsala, Sweden) on the adaptation of empirically started antimicrobial therapy. We performed a real-world study during which antimicrobial susceptibility testing (AST) results were instantly reported to the treating physician in an established multidisciplinary antimicrobial stewardship setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!