Cosmetics comprising either natural or synthetic components are used almost regularly and universally in different forms to enhance the beauty. The utmost disclosure of human membrane to sunlight and environmental pollution results in the exhibition of free radical, that react with deoxyribonucleic acid, proteins and fatty acids, causation oxidative destruction dysfunction of the antioxidant system. In skin, the formation of reactive oxygen species leads to skin diseases, predominantly cutaneous malignancies, immunosuppression, wrinkles, aging, etc., The human organism fosters a barrier practice against the destructive action of free radicals, comprising mostly of vitamins, carotenoids and enzymes. Cosmetic products are the best option to reduce skin disorders such as hyper pigmentation, skin aging, skin wrinkling and rough skin texture, etc., Hence in this review, we conferred various in vitro methods that are used for the development of novel cosmetic formulation. There is an expanding fascinate employing in vitro techniques because they are less time consuming, more cost-effective and lessen the participation of human volunteers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842001PMC
http://dx.doi.org/10.4103/0973-7847.120507DOI Listing

Publication Analysis

Top Keywords

vitro techniques
8
skin
7
techniques assess
4
assess proficiency
4
proficiency skin
4
skin care
4
care cosmetic
4
cosmetic formulations
4
formulations cosmetics
4
cosmetics comprising
4

Similar Publications

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

T cell induced expression of Coronin-1A facilitates blood-brain barrier transmigration of breast cancer cells.

Sci Rep

December 2024

Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.

In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.

View Article and Find Full Text PDF

Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.

View Article and Find Full Text PDF

Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!