Carbon ion irradiation is an emerging therapeutic option for various tumor entities. Radiation resistance of solid tumors toward photon irradiation is caused by attenuation of DNA damage in less oxygenated tumor areas and by increased hypoxia-inducible factor (HIF)-1 signaling. Carbon ion irradiation acts independently of oxygen; however, the role of HIF-1 is unclear. We analyzed the effect of HIF-1 signaling after carbon ions in comparison to photons by using biological equivalent radiation doses in a human non-small-cell cancer model. The studies were performed in cultured A549 and H1299 cell lines and in A549 xenografts. Knockdown of HIF-1α in vivo combined with photon irradiation delayed tumor growth (23 vs. 13 d; P<0.05). Photon irradiation induced HIF-1α and target genes, predominantly in oxygenated cells (1.6-fold; P<0.05), with subsequent enhanced tumor angiogenesis (1.7-fold; P<0.05). These effects were not observed after carbon ion irradiation. Micro-DNA array analysis indicated that photons, but not carbon ions, significantly induced components of the mTOR (mammalian target of rapamycin) pathway (gene set enrichment analysis; P<0.01) as relevant for HIF-1α induction. After carbon ion irradiation in vivo, we observed substantially decreased HIF-1α levels (8.9-fold; P<0.01) and drastically delayed tumor growth (P<0.01), an important finding that indicates a higher relative biological effectiveness (RBE) than anticipated from the cell survival data. Taken together, the evidence showed that carbon ions mediate an improved therapeutic effectiveness without tumor-promoting HIF-1 signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.13-242230 | DOI Listing |
ACS Energy Lett
January 2025
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
The global lithium-ion battery recycling capacity needs to increase by a factor of 50 in the next decade to meet the projected adoption of electric vehicles. During this expansion of recycling capacity, it is unclear which technologies are most appropriate to reduce costs and environmental impacts. Here, we describe the current and future recycling capacity situation and summarize methods for quantifying costs and environmental impacts of battery recycling methods with a focus on cathode active materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China.
The NASICON-type NaV(PO) (NVP) is recognized as a potential cathode material for Na-ion batteries (SIBs). Nevertheless, its inherent small electronic conductivity induces limited cycling stability and rate performance. Carbon coating, particularly N-doped carbon, has been identified as an effective strategy to address these challenges.
View Article and Find Full Text PDFJ Chin Med Assoc
January 2025
Department of Heavy Particles and Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
Background: Unlike conventional photon radiotherapy, particle therapy has the advantage of dose distribution. Carbon-ion radiotherapy is also advantageous in terms of biological effectiveness and other radiobiological aspects. These benefits lead to a higher response probability for previously known radioresistant tumor types.
View Article and Find Full Text PDFEnviron Technol
January 2025
Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.
View Article and Find Full Text PDFSmall Methods
January 2025
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543, Republic of Korea.
The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!