Prohibitins are members of a highly conserved protein family containing the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain (also known as the prohibitin [PHB] domain) found in unicellular eukaryotes, fungi, plants, animals, and humans. Two highly homologous members of prohibitins expressed in eukaryotes are prohibitin (PHB; B-cell receptor associated protein-32, BAP-32) and prohibitin 2/repressor of estrogen receptor activity (PHB2, REA, BAP-37). Both PHB and REA/PHB2 are ubiquitously expressed and are present in multiple cellular compartments including the mitochondria, nucleus, and the plasma membrane. Multiple functions have been attributed to the mitochondrial and nuclear PHB and PHB2/REA including cellular differentiation, anti-proliferation, and morphogenesis. One of the major functions of the prohibitins are in maintaining the functional integrity of the mitochondria and protecting cells from various stresses. In the present review, we focus on the recent research developments indicating that PHB and PHB2/REA are involved in maintaining cellular survival through the Ras-Raf-MEK-Erk pathway. Understanding the molecular mechanisms by which the intracellular signaling pathways utilize prohibitins in governing cellular survival is likely to result in development of therapeutic strategies to overcome various human pathological disorders such as diabetes, obesity, neurological diseases, inflammatory bowel disease, and cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413917 | PMC |
http://dx.doi.org/10.1002/jcp.24531 | DOI Listing |
Sci Rep
December 2024
School of Medicine, Yichun University, Yichun, 336000, China.
Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
Breast cancer is a leading cause of cancer-related deaths among women globally. It is imperative to explore novel biomarkers to predict breast cancer treatment response as well as progression. Here, we collected six breast cancer samples and paired normal tissues for high-throughput sequencing.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China.
Mitochondria are pivotal in cellular energy metabolism and have garnered significant attention for their roles in cancer progression and therapy resistance. Despite this, the functional diversity of mitochondria across various cancer types remains inadequately characterized. This study seeks to fill this knowledge gap by introducing and validating MitoScore-a novel metric designed to quantitatively assess mitochondrial function across a wide array of cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!