Ninjurin1 is a homotypic adhesion molecule that contributes to leukocyte trafficking in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, in vivo gene deficiency animal studies have not yet been done. Here, we constructed Ninjurin1 knock-out (KO) mice and investigated the role of Ninjurin1 on leukocyte trafficking under inflammation conditions such as EAE and endotoxin-induced uveitis. Ninjurin1 KO mice attenuated EAE susceptibility by reducing leukocyte recruitment into the injury regions of the spinal cord and showed less adhesion of leukocytes on inflamed retinal vessels in endotoxin-induced uveitis mice. Moreover, the administration of a custom-made antibody (Ab26-37) targeting the Ninjurin1 binding domain ameliorated the EAE symptoms, showing the contribution of its adhesion activity to leukocyte trafficking. In addition, we addressed the transendothelial migration (TEM) activity of bone marrow-derived macrophages and Raw264.7 cells according to the expression level of Ninjurin1. TEM activity was decreased in Ninjurin1 KO bone marrow-derived macrophages and siNinj1 Raw264.7 cells. Consistent with this, GFP-tagged mNinj1-overexpressing Raw264.7 cells increased their TEM activity. Taken together, we have clarified the contribution of Ninjurin1 to leukocyte trafficking in vivo and delineated its direct functions to TEM, emphasizing Ninjurin1 as a beneficial therapeutic target against inflammatory diseases such as multiple sclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916537 | PMC |
http://dx.doi.org/10.1074/jbc.M113.498212 | DOI Listing |
Clin Transl Oncol
December 2024
Instituto de Investigación Sanitaria Princesa, Madrid, Spain.
Introduction: Peripheral blood mononuclear cells (PBMCs) trafficking is regulated by chemokines, which modulate leukocyte migration toward tumors and may collaborate in the efficacy of immunotherapy. In our study, we investigated whether the CXCL12/CXCR4 axis plays a role in the efficacy of immunotherapy in non-small cell lung cancer (NSCLC) by analyzing CXCR4 expression for CXCR4 in peripheral blood (PB), and the expression of its ligand CXCL12 in tumor.
Methods: We identified PBMCs expressing CXCR4 using flow cytometry in a prospective cohort of NSCLC patients before starting anti-PD-1 immunotherapy.
J Inflamm (Lond)
December 2024
Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
Basement membranes form part of the extracellular matrix (ECM), which is the structural basis for all tissue. Basement membranes are cell-adherent sheets found between cells and vascular endothelia, including those of the central nervous system (CNS). There is exceptional regional specialisation of these structures, both in tissue organisation and regulation of tissue-specific cellular processes.
View Article and Find Full Text PDFIntensive Care Med Exp
December 2024
Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
Background: Sepsis is commonly associated with acute respiratory distress syndrome (ARDS). Although the exaggerated inflammation may damage intact lung tissues, a percentage of patients with ARDS are reportedly immunocompromised, with worse outcomes. Herein, using a murine sepsis model, time-course immune reprogramming after sepsis was evaluated to explore whether the host is immunocompromised.
View Article and Find Full Text PDFSurg Neurol Int
November 2024
Department of Neurosurgery, Queen Mary Hospital, Pok Fu Lam, Hong Kong Hospital Authority, Hong Kong.
Nat Commun
December 2024
Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium.
Local delivery of mRNA-based immunotherapy offers a promising avenue as it enables the production of specific immunomodulatory proteins that can stimulate the immune system to recognize and eliminate cancer cells while limiting systemic exposure and toxicities. Here, we develop and employ lipid-based nanoparticles (LNPs) to intratumorally deliver an mRNA mixture encoding the cytokines interleukin (IL)-21 and IL-7 and the immunostimulatory molecule 4-1BB ligand (Triplet LNP). IL-21 synergy with IL-7 and 4-1BBL leads to a profound increase in the frequency of tumor-infiltrating CD8 T cells and their capacity to produce granzyme B and IFN-γ, leading to tumor eradication and the development of long-term immunological memory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!