To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893938 | PMC |
http://dx.doi.org/10.1117/1.JBO.18.12.126014 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
Coronary microvascular dysfunction (CMD) refers to clinical symptoms caused by structural and functional damage to coronary microcirculation. The timely and precise diagnosis of CMD-related myocardial ischemia is essential for improving patient prognosis. This study describes a method for the multimodal (fluorescence, ultrasonic, and photoacoustic) noninvasive imaging and treatment of CMD based on ischemic myocardium-targeting peptide (IMTP)-guided nanobubbles functionalized with indocyanine green (IMTP/ICG NBs) and characterizes their basic characteristics and in vitro imaging and targeting abilities.
View Article and Find Full Text PDFGels
January 2025
Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan.
Skin cancer is the world's fifth most diagnosed malignancy and is increasingly occurring in young adults. The elevated morbidity and mortality of skin cancer are known to be highly correlated with its frequent recurrence after tumor excision. Although regimens such as chemotherapy and/or immunotherapy are often administered following surgical treatments, the patients may suffer from severe side effects, drug resistance, and/or high cost during treatments, indicating that the development of an effective and safe modality for skin cancer after surgery is still highly demanded nowadays.
View Article and Find Full Text PDFAnn Plast Surg
February 2025
From the Department of Plastic and Reconstructive Surgery, Ewha Womans University College of Medicine, Mokdong Hospital, Seoul, Republic of Korea.
Indocyanine green (ICG) is a water-soluble green substance that is detectable through infrared cameras and emits greenish light. Approved for medical use in the 1950s, ICG has gained prominence as a real-time visualization tool. Widely recognized as a generally safe substance, ICG is applied in diverse fields.
View Article and Find Full Text PDFJ Med Chem
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Precise surgical resection of prostate cancer (PCa) is a significant clinical challenge due to the impact of positive surgical margins on postoperative outcomes. Fluorescence-guided surgery (FGS) enables real-time tumor visualization using fluorescent probes. In this study, we synthesized and evaluated an indocyanine green (ICG)-based PSMA-targeted near-infrared probe, , for intraoperative imaging of PCa lesions.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Bioenergetic therapy based on tumor glucose metabolism is emerging as a promising therapeutic modality. To overcome the poor bioavailability and toxicity of arenobufagin (ArBu), a MOF-derived intelligent nanosystem, ZIAMH, was designed to facilitate energy deprivation by simultaneous interventions of glycolysis, OXPHOS and TCA cycle. Herein, zeolitic imidazolate framework-8 was loaded with ArBu and indocyanine green, encapsulated within metal-phenolic networks for chemodynamic therapy and hyaluronic acid modification for tumor targeting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!