Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds.

ASAIO J

From the *Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; †Department of Biomaterial Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran; ‡Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran; and §Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran.

Published: August 2014

In this study, we have demonstrated the ability of cord blood (CB)-derived unrestricted somatic stem cells (USSCs) and chitosan-modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffold to promote skin regeneration. Afterward, the scaffolds were evaluated by structural, microscopic, physical, and mechanical assays and cell culture analyses. Results of structural, physical, and mechanical analyses also showed a good resilience and compliance with movement as a skin graft. Cellular experiments showed a better cell adhesion, growth, and proliferation inside the modified scaffolds compared with unmodified ones. In animal models with histological examinations, all groups, excluding the control group especially the groups treated with stem cells, exhibited the most pronounced effect on wound closure, with the statistically significant improvement in wound healing being seen at postoperative day 21. These data suggest that chitosan-modified PHBV scaffold loaded with CB-derived USSCs could significantly contribute to wound repair and be potentially used in the tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAT.0000000000000025DOI Listing

Publication Analysis

Top Keywords

stem cells
12
cord blood
8
phbv scaffold
8
physical mechanical
8
regeneration full-thickness
4
full-thickness skin
4
skin defects
4
defects umbilical
4
umbilical cord
4
blood stem
4

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!