Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accumulating evidence suggests that dysregulation of histone modification is involved in the pathogenesis and/or pathophysiology of psychiatric disorders. However, the abnormalities in histone modification in the animal model of schizophrenia and the efficacy of antipsychotics for such abnormalities remain unclear. Here, we investigated the involvement of histone modification in phencyclidine-induced behavioral abnormalities and the effects of antipsychotics on these abnormalities. After repeated phencyclidine (10 mg/kg) treatment for 14 consecutive days, mice were treated with antipsychotics (clozapine or haloperidol) or the histone deacetylase inhibitor sodium butyrate for 7 d. Repeated phencyclidine treatments induced memory impairment and social deficit in the mice. The acetylation of histone H3 at lysine 9 residues decreased in the prefrontal cortex with phencyclidine treatment, whereas the expression level of histone deacetylase 5 increased. In addition, the phosphorylation of Ca²⁺/calmodulin-dependent protein kinase II in the nucleus decreased in the prefrontal cortex of phencyclidine-treated mice. These behavioral and epigenetic changes in phencyclidine-treated mice were attenuated by clozapine and sodium butyrate but not by haloperidol. The dopamine D1 receptor antagonist SCH-23390 blocked the ameliorating effects of clozapine but not of sodium butyrate. Furthermore, clozapine and sodium butyrate attenuated the decrease in expression level of GABAergic system-related genes in the prefrontal cortex of phencyclidine-treated mice. These findings suggest that the antipsychotic effect of clozapine develops, at least in part, through epigenetic modification by activation of the dopamine D1 receptor in the prefrontal cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1461145713001466 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!