Nitrogen-doped turbostratic carbon nanoparticles (NPs) are prepared using fast single-step flame synthesis by directly burning acetonitrile in air atmosphere and investigated as an anode material for lithium-ion batteries. The as-prepared N-doped carbon NPs show excellent Li-ion stoarage properties with initial discharge capacity of 596 mA h g(-1), which is 17% more than that shown by the corresponding undoped carbon NPs synthesized by identical process with acetone as carbon precursor and also much higher than that of commercial graphite anode. Further analysis shows that the charge-discharge process of N-doped carbon is highly stable and reversible not only at high current density but also over 100 cycles, retaining 71% of initial discharge capacity. Electrochemical impedance spectroscopy also shows that N-doped carbon has better conductivity for charge and ions than that of undoped carbon. The high specific capacity and very stable cyclic performance are attributed to large number of turbostratic defects and N and associated increased O content in the flame-synthesized N-doped carbon. To the best of our knowledge, this is the first report which demonstrates single-step, direct flame synthesis of N-doped turbostratic carbon NPs and their application as a potential anode material with high capacity and superior battery performance. The method is extremely simple, low cost, energy efficient, very effective, and can be easily scaled up for large scale production.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la403366eDOI Listing

Publication Analysis

Top Keywords

n-doped carbon
16
flame synthesis
12
anode material
12
carbon nps
12
carbon
9
carbon nanoparticles
8
lithium-ion batteries
8
turbostratic carbon
8
initial discharge
8
discharge capacity
8

Similar Publications

Chemiluminescence of silver and nitrogen doped carbon dots induced by potassium ferricyanide/hydrogen peroxide and its analytical application.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China. Electronic address:

In this study, carbon dots doped with silver and nitrogen (Ag,N-CDs) were synthesized and their application in chemiluminescence (CL) was investigated using the potassium ferricyanide/hydrogen peroxide (KFe(CN)/HO) reaction. Theoretical calculations reveal that Ag doping facilitates a lower excitation energy. The experimental conditions influencing the CL reaction were examined and optimized.

View Article and Find Full Text PDF

Lignin-coordinated niobium-based catalyst for the efficient conversion of industrial lignin in choline chloride-lactic acid integrated with ethanol deep eutectic solvent.

Int J Biol Macromol

January 2025

Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:

Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.

View Article and Find Full Text PDF

Defect-rich Co/N-doped hierarchically porous carbons for rapid and highly efficient adsorption of organophosphorus pesticides from environmental water.

J Chromatogr A

January 2025

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, PR China. Electronic address:

Organophosphorus pesticides (OPPs) severely pollute various environmental water due to their excessive use, and it is extremely urgent to develop novel adsorbents with high adsorption capacities, rapid removal rate and easily recovery for the removal of OPPs. In this study, defect-rich Co/N-doped hierarchically porous carbons (Co/N-DHPCs) were constructed by pyrolyzing acid-etched ZIF-67 precursor. The developed Co/N-DHPCs possessed rich defects, well-developed hierarchical porous structure, high specific surface area and excellent magnetic property, and exhibited large adsorption capacities of 103.

View Article and Find Full Text PDF

As a potential alternative to next-generation LIBs, carbonous materials have garnered significant attention as anode materials for potassium-ion batteries due to their low cost and environmental friendliness. However, carbonaceous materials cannot fulfill the demand of anode for PIBs, due to volume expansion and poor stability during charging/discharging process. It is well-known that N doping can provide active sites for K-storage, and expand the layer distance between graphite layers.

View Article and Find Full Text PDF

Transition Metal-Mediated Preparation of Nitrogen-Doped Porous Carbon for Advanced Zinc-Ion Hybrid Capacitors.

Nanomaterials (Basel)

January 2025

Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!