Studies indicate that hyperglycemia-induced oxidative stress triggers the development of microvascular and macrovascular complications in diabetes. Accordingly, we hypothesized that maslinic acid (MA) prevents these complications due to its antioxidant properties. We, therefore, investigated the effects of 5-week MA treatment of streptozotocin (STZ)-induced diabetic rats on anti-oxidative status of cardiac, hepatic and renal tissues as well as on kidney function. Proximal tubular effects of MA were studied in anesthetized rats challenged with hypotonic saline after a 3.5 h equilibration for 4 h of 1 h control, 1.5 h treatment and 1.5 h recovery periods using lithium clearance. MA was added to the infusate during the treatment period. Oral glucose tolerance responses to MA were monitored in rats given a glucose load after an 18 h fast. Compared with untreated diabetic rats, MA-treated diabetic animals exhibited significantly low malondialdehyde (MDA, a marker of lipid peroxidation) and increased the activity of antioxidant enzymes; superoxide dismutase and glutathione peroxidase in hepatic, cardiac and renal tissues. The expressions of gastrocnemius muscle GLUT4 and kidney GLUT1 and GLUT2 were assessed to elucidate the mechanism of the hypoglycemic effects of MA. MA-treatment diminished the expression of GLUT1 and GLUT2 in diabetic kidney and reduced glycemia values of diabetic rats. MA administration increased urinary Na+ outputs and additionally the FENa indicating that at least part of the overall reduction in Na+ reabsorption occurred in the proximal tubules. These results suggest antioxidant effects of MA can ameliorate oxidative stress and improve kidney function in diabetes mellitus.

Download full-text PDF

Source
http://dx.doi.org/10.3109/0886022X.2013.867799DOI Listing

Publication Analysis

Top Keywords

diabetic rats
16
kidney function
12
antioxidant effects
8
maslinic acid
8
oxidative stress
8
renal tissues
8
glut1 glut2
8
diabetic
6
rats
6
effects
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!