JMJD5, a Jumonji C domain-containing dioxygenase, is important for embryonic development and cancer growth. Here, we show that JMJD5 is up-regulated by hypoxia and is crucial for hypoxia-induced cell proliferation. JMJD5 interacts directly with pyruvate kinase muscle isozyme (PKM)2 to modulate metabolic flux in cancer cells. The JMJD5-PKM2 interaction resides at the intersubunit interface region of PKM2, which hinders PKM2 tetramerization and blocks pyruvate kinase activity. This interaction also influences translocation of PKM2 into the nucleus and promotes hypoxia-inducible factor (HIF)-1α-mediated transactivation. JMJD5 knockdown inhibits the transcription of the PKM2-HIF-1α target genes involved in glucose metabolism, resulting in a reduction of glucose uptake and lactate secretion in cancer cells. JMJD5, along with PKM2 and HIF-1α, is recruited to the hypoxia response element site in the lactate dehydrogenase A and PKM2 loci and mediates the recruitment of the latter two proteins. Our data uncover a mechanism whereby PKM2 can be regulated by factor-binding-induced homo/heterooligomeric restructuring, paving the way to cell metabolic reprogram.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890888PMC
http://dx.doi.org/10.1073/pnas.1311249111DOI Listing

Publication Analysis

Top Keywords

pkm2
8
glucose metabolism
8
pyruvate kinase
8
cancer cells
8
jmjd5
6
jmjd5 regulates
4
regulates pkm2
4
pkm2 nuclear
4
nuclear translocation
4
translocation reprograms
4

Similar Publications

TREM2 promotes the formation of a tumor-supportive microenvironment in hepatocellular carcinoma.

J Exp Clin Cancer Res

January 2025

Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.

Background: Triggering receptor expressed on myeloid cells 2 (TREM2), a surface receptor predominantly expressed on myeloid cells, is a major hub gene in pathology-induced immune signaling. However, its function in hepatocellular carcinoma (HCC) remains controversial. This study aimed to evaluate the role of TREM2 in the tumor microenvironment in the context of HCC progression.

View Article and Find Full Text PDF

HACD2 Promotes Pancreatic Cancer Progression by Enhancing PKM2 Dissociation From PRKN in a Dehydratase-Independent Manner.

Adv Sci (Weinh)

January 2025

Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.

3-Hydroxyacyl-CoA dehydratase 2 (HACD2), an obesity-related gene involved in the elongation of long-chain fatty acids, is highly expressed in pancreatic cancer (PC) and is associated with patient prognosis. Interestingly, the study reveals that HACD2 mediated the proliferation of PC cells in a dehydratase-independent manner, affecting the downstream glycolytic pathway. Mechanistically, HACD2 promotes PC cells proliferation by binding to E3 ubiquitin-protein ligase parkin (PRKN) and enhancing pyruvate kinase PKM (PKM2) dissociation from PRKN, resulting in reduced ubiquitination of PKM2 and increased dimerization of PKM2, which subsequently promote c-Myc expression and tumor growth.

View Article and Find Full Text PDF

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

Crepidamycins A-E, pyranonaphthoquinones from endophytic Streptomyces sp. MG-F-1 of Dendrobium crepidatum by the co-culture strategy.

Phytochemistry

January 2025

Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:

On the basis of the co-culture strategy, five previously undescribed S-bridged pyranonaphthoquinones, crepidamycins A-E (1-5) and five known analogues (6-10) were isolated from a medicinal plant endophytic Streptomyces sp. MG-F-1 in Dendrobium crepidatum with Bacillus cereus MG-1. The structures and absolute configurations of 1-5 were elucidated by the interpretation of data from detailed spectroscopic analysis and electronic circular dichroism spectra, together with consideration of the biogenetic origins.

View Article and Find Full Text PDF

Preventive vs. Therapeutic Effects of Shoutai Wan: Maintaining an Acidic Microenvironment at the Maternal-Fetal Interface to Promote Angiogenesis and Minimize Pregnancy Loss in RSA Mice.

J Ethnopharmacol

January 2025

College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, 050091, China. Electronic address:

Ethnopharmacological Relevance: The classic TCM prescription, Shoutai Wan (STW), is extensively used in clinical settings to manage threatened miscarriage and Recurrent spontaneous abortion (RSA). The complexity of pregnancy physiology, coupled with diverse etiologies, and the specificity of energy metabolism for normal embryo attachment and development,pose challenges to clinical diagnosis and treatment. The specific molecular mechanisms of how STW regulates these biological processes and contributes to the treatment of RSA remain to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!