Divalent cations Mg(2+) and Ba(2+) selectively and directly potentiate transient receptor potential vanilloid type 1 heat activation by lowering the activation threshold into the room temperature range. We found that Mg(2+) potentiates channel activation only from the extracellular side; on the intracellular side, Mg(2+) inhibits channel current. By dividing the extracellularly accessible region of the channel protein into small segments and perturbing the structure of each segment with sequence replacement mutations, we observed that the S1-S2 linker, the S3-S4 linker, and the pore turret are all required for Mg(2+) potentiation. Sequence replacements at these regions substantially reduced or eliminated Mg(2+)-induced activation at room temperature while sparing capsaicin activation. Heat activation was affected by many, but not all, of these structural alternations. These observations indicate that extracellular linkers and the turret may interact with each other. Site-directed fluorescence resonance energy transfer measurements further revealed that, like heat, Mg(2+) also induces structural changes in the pore turret. Interestingly, turret movement induced by Mg(2+) precedes channel activation, suggesting that Mg(2+)-induced conformational change in the extracellular region most likely serves as the cause of channel activation instead of a coincidental or accommodating structural adjustment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874565 | PMC |
http://dx.doi.org/10.1085/jgp.201311024 | DOI Listing |
Background: While a number of recent anti-amyloid antibodies demonstrated a robust reduction of amyloid biomarkers in clinical trials, the impact on functional improvement is much more variable. We hypothesize that this larger variability is driven by comedications, common genotype variants and underlying tau pathology.
Method: In a previously calibrated computational neuroscience model of ADAS-Cog, we implemented the effect of soluble amyloid monomers and oligomers on glutamate and nicotinic AChR neurotransmission and the effect of intracellular tau oligomers on voltage-gated Na and K+ channels and synaptic density.
Alzheimers Dement
December 2024
Erasmus University Rotterdam, Rotterdam, Netherlands.
Background: 'Intellectual assets' generated in traditional university settings, that may not fit the interests of the standard 'valuation criteria' (i.e. commercially profitable), such as non-pharmacological dementia care research, often remain siloed within their respective research disciplines and originating institutions.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bionano Technology, Gachon University, Seongnam, Korea, Republic of (South).
Background: Electroencephalography (EEG) is a non-intrusive technique that provides comprehensive insights into the electrical activities of the brain's cerebral cortex. The brain signals obtained from EEGs can be used as a neuropsychological biomarker to detect different stages of Alzheimer's disease (AD) through quantitative EEG (qEEG) analysis. This paper investigates the difference in the abnormalities of resting state EEG (rEEG) signals between eyes-open (EOR) and eyes-closed (ECR) in AD by analyzing 19- scalp electrode EEG signals and making a comparison with healthy controls (HC).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Minnesota, Minneapolis, MN, USA.
Background: There is ample evidence that music can boost brain activity and jog deeply embedded memories. Literature indicates a significant improvement in autobiographical memory (ABM) recall for different individuals during background music sessions. Existing research is based solely on qualitative data, although music has a significant impact on physiological activity.
View Article and Find Full Text PDFMicrofluid Nanofluidics
July 2024
Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA.
The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!