Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201304667 | DOI Listing |
Phys Rev Lett
December 2024
Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland.
Designer heterostructures have offered a very powerful strategy to create exotic superconducting states by combining magnetism and superconductivity. In this Letter, we use a heterostructure platform combining supramolecular metal complexes (SMCs) with a quasi-2D van der Waals superconductor NbSe_{2}. Our scanning tunneling microscopy measurements demonstrate the emergence of Yu-Shiba-Rusinov bands arising from the interaction between the SMC magnetism and the NbSe_{2} superconductivity.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany.
We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV_{3}Sb_{5}, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around p∼0.7 GPa from the familiar 2×2 pattern to a long-range-ordered modulation at wave vector q=(0,3/8,1/2).
View Article and Find Full Text PDFNano Lett
December 2024
Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states.
View Article and Find Full Text PDFNature
December 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.
View Article and Find Full Text PDFACS Sens
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
Van Hove singularity (vHs), the singularity point of density of states (DOS) in crystalline solids, is a research hotspot in emerging phenomena such as light-matter interaction, superconducting, and quantum anomalous Hall effect. Although the significance of vHs in photothermoelectric (PTE) effect has been recognized, its integral role in electron excitation and thermoelectric effect is still unclear, particularly in the mid-infrared band that suffers from Pauli blockade in semimetals. Here, we unveil the Fermi-level-modulated PTE behavior in the vicinity of vHs in carbon nanotubes, employing ionic-liquid gating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!