TASK3 (TWIK-related acid-sensitive K(+) channel 3) potassium channels are members of the two-pore-domain potassium channel family. They are responsible for background leak potassium currents found in many cell types. TASK3 channels are genetically imprinted, and a mutation in TASK3 (G236R) is responsible for Birk Barel mental retardation dysmorphism syndrome, a maternally transmitted developmental disorder. This syndrome may arise from a neuronal migration defect during development caused by dysfunctional TASK3 channels. Through the use of whole-cell electrophysiologic recordings, we have found that, although G236R mutated TASK3 channels give rise to a functional current, this current is significantly smaller in an outward direction when compared with wild-type (WT) TASK3 channels. In contrast to WT TASK3 channels, the current is inwardly rectifying. Furthermore, the current through mutated channels is differentially sensitive to a number of regulators, such as extracellular acidification, extracellular zinc, and activation of Gαq-coupled muscarinic (M3) receptors, compared with WT TASK3 channels. The reduced outward current through mutated TASK3_G236R channels can be overcome, at least in part, by both a gain-of-function additional mutation of TASK3 channels (A237T) or by application of the nonsteroidal anti-inflammatory drug flufenamic acid (FFA; 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid). FFA produces a significantly greater enhancement of current through mutated channels than through WT TASK3 channels. We propose that pharmacologic enhancement of mutated TASK3 channel current during development may, therefore, provide a potentially useful therapeutic strategy in the treatment of Birk Barel syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.113.090530 | DOI Listing |
In the early stages of retinal development, a form of correlated activity known as retinal waves causes periodic depolarizations of immature retinal ganglion cells (RGCs). Retinal waves are crucial for refining visual maps in the brain's retinofugal targets and for the development of retinal circuits underlying feature detection, such as direction selectivity. Yet, how waves alter gene expression in immature RGCs is poorly understood, particularly at the level of the many distinct types of RGCs that underlie the retina's ability to encode diverse visual features.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130061, China.
TWIK-related acid-sensitive potassium channel 1 (TASK-1) is expressed ubiquitously across various tissues and plays a significant role in neural activity and anesthetic modulation, making it a crucial target for pharmaceutical research. The high conservation of binding site residues within the TASK family, particularly between TASK-1 and TASK-3, necessitates the development of selective inhibitors for TASK-1. In this study, we utilized a combination of structure-based drug design (SBDD) and ligand-based drug design (LBDD) approaches.
View Article and Find Full Text PDFStructure
January 2025
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK. Electronic address:
TASK-1 and TASK-3 are pH-sensitive two-pore domain (K2P/KCNK) K channels. Their functional roles make them promising targets for treatment of multiple disorders including sleep apnea, pain, and atrial fibrillation. Mutations in these channels are also associated with neurodevelopmental and hypertensive disorders.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK. Electronic address:
Int J Mol Sci
September 2024
Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!