Tactile stimulation (TS) applied to adult rats after cortical injury (medial frontal cortex aspiration or sensorimotor pial stripping stroke model) has been previously shown to ameliorate behavioral impairments and to improve morphological parameters like dendritic length of prefrontal cortical neurons (Gibb et al., 2010). The purpose of this study was to examine the effect of TS on healthy and hemiparkinsonian adult rats. Therefore, the animals received TS for 14 days and 15 min three times daily. At different time points rats were tested in various behavioral tests (amphetamine-induced rotation, cylinder test, staircase test). Finally, rats were sacrificed, their brains removed, and processed for Golgi-Cox analyses, tyrosine hydroxylase immunohistochemistry and quantitative RT-PCR. We found that the striatal 6-OHDA lesion itself induced a long-term increase of astroglial Fgf2 transcript levels, but was not further increased by TS. In contrast TS applied to healthy rats elicited a transient short-term increase of Fgf2 in the striatum and Bdnf, Grin1, and Fgf2 in the hippocampus. Moreover, behavioral and histological analyses do not support a beneficial effect of TS for hemiparkinsonian rats, applied for two weeks starting one day after partial striatal 6-OHDA lesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2013.12.011 | DOI Listing |
Neuropharmacology
November 2024
Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA. Electronic address:
Parkinson's disease (PD) is a neurodegenerative disorder typified by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) leading to motor symptoms including resting tremor, rigidity, akinesia, and postural instability. DA replacement therapy with levodopa (L-DOPA) remains the gold-standard treatment for the motor symptoms of PD. Unfortunately, chronic use of L-DOPA leads to the development of side effects known as L-DOPA-induced dyskinesia (LID).
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Biophysics, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
Neuropeptide-S (NPS) has been demonstrated to mitigate learning and memory deficits in experimental models of Parkinson's Disease (PD). Despite this, the precise mechanisms through which NPS exerts its influence on cognitive functions remain to be fully unknown. This study aims to elucidate the effects of central administration of NPS on learning and memory deficits associated with an experimental rat hemiparkinsonian model, examining both electrophysiological and molecular parameters.
View Article and Find Full Text PDFNeuroscience
December 2024
Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA; Department of Neurology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA. Electronic address:
Brain Commun
October 2024
Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
Parkinson's disease is a neurodegenerative disease characterized by gait dysfunction in the advanced stages of the disease. The unilateral 6-hydroxydopamine toxin-induced model is the most studied animal model of Parkinson's disease, which reproduces gait dysfunction after >68% dopamine loss in the substantia nigra pars compacta. The extent to which the neural activity in hemi-parkinsonian rats correlates to gait dysfunction and dopaminergic cell loss is not clear.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!