Coordinated intracellular trafficking is critically important for proper timing of major cellular events during embryogenesis. Nuclear import mediated by the karyopherin α/β (importin α/β) heterodimer is perhaps the best characterised nuclear trafficking system in eukaryotic cells. Seven karyopherin α subtypes have been identified in the domestic pig, and although each karyopherin α subtype transports proteins bearing classical nuclear localisation signals (NLSs), individual karyopherin α subtypes have been shown to preferentially transport specific cargoes. The aim of the present study was to determine the mechanism by which BRN2, a transcription factor previously reported to be transported by the karyopherin α/β heterodimer, gains access to the nucleus in porcine oocytes and embryos. Using a combination of in vivo and in vitro assays, we tested the hypothesis that discrete karyopherin α subtypes transport BRN2 into the nuclei of porcine oocytes and cleavage stage embryos. Our results show that ectopically expressed BRN2 adopts a nuclear localisation in all nuclei through the 4-cell stage of development, whereas only a subset of blastomeres in 8-cell stage embryos possess nuclear BRN2. This pattern is unique to BRN2 because another ectopically expressed NLS-containing protein is able to adopt a nuclear localisation in all blastomeres of 8-cell stage embryos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/RD13205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!