Classification plays a central role in quantitative histopathology. Success is expressed in terms of the accuracy of prediction for the classification of future data points and an estimate of the prediction error. The prediction error is affected by the chosen procedure, e.g., the use of a training set of data points, a validation set, an independent test set, the sample size and the learning curve of the classification algorithm. For small samples procedures such as the "jackknife," the "leave one out" and the "bootstrap" are recommended in order to arrive at an unbiased estimate of the true prediction error. All of the procedures rest on the assumption that the data set used to derive a classification rule is representative for the diagnostic categories involved. It is this assumption that in quantitative histopathology has to be carefully verified before a clinically generally valid classification procedure can be claimed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084960 | PMC |
PLoS Comput Biol
January 2025
Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.
Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.
Combining physics with computational models is increasingly recognized for enhancing the performance and energy efficiency in neural networks. Physical reservoir computing uses material dynamics of physical substrates for temporal data processing. Despite the ease of training, building an efficient reservoir remains challenging.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
KU Leuven, Department of Movement Sciences, B-3000 Leuven, Belgium.
In motor adaptation, learning is thought to rely on a combination of several processes. Two of these are implicit learning (incidental updating of the movement due to sensory prediction error) and explicit learning (intentional adjustment to reduce target error). The explicit component is thought to be fast adapting, while the implicit one is slow.
View Article and Find Full Text PDFVet Med Sci
January 2025
Andırın Vocational School, Department of Computer Technologies, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Türkiye.
Prediction of body weight (BW) using biometric measurements is an important tool especially for animal welfare and automatic phenotyping tools that needs mathematical models. In this study, it was aimed to predict the BW using body length (BL), chest girth (CG) and width of the waist (WW) for rabbits of the maternal form of Hyla NG. The standard rabbit-raising practices were applied for the animals.
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Unlabelled: Piperacillin-tazobactam (TZP) is a commonly used broad-spectrum agent. OXA-1 β-lactamases drive global Enterobacterales TZP resistance and raise MICs to the clinical breakpoints (8/4-16/4 µg/mL), making susceptibility testing challenging. Two TZP disks are used globally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!