AI Article Synopsis

Article Abstract

Brief historical summary about Institute' vibroacoustic factors investigations development in the XXth century is presented. There are shown the data of noise, vibration, ultra- and infrasound hygienic rating in comparison with international approaches; the ways of its international harmonization in modern social and economic situation are selected.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[vibroacoustic factors
4
factors hygienic
4
hygienic regulation
4
regulation principles
4
principles russia
4
russia abroad
4
abroad evolution
4
evolution succession]
4
succession] historical
4
historical summary
4

Similar Publications

Radiation efficiency varying equivalent radiated power.

J Acoust Soc Am

January 2025

Grundfos A/S, Bjerringbro, 8550, Denmark.

In this paper, an improved version of the classical equivalent radiated power (ERP) approximation is proposed based on principled physical arguments. A geometry-, frequency-, and vibration pattern-dependent approximation of radiation efficiency is developed and used as a corrective factor for the classical ERP approximation. The proposed method called "radiation efficiency varying equivalent radiated power" (revERP), is shown to greatly improve the accuracy of classical ERP at low Helmholtz numbers, while attaining the accuracy of classical ERP at high Helmholtz numbers.

View Article and Find Full Text PDF

This study investigates the dynamic stiffness and damping characteristics of three polyurethane materials-PM, PS, and PST-using a comprehensive vibroacoustic testing approach. The aim is to examine material parameters such as dynamic stiffness, Young's modulus, critical damping factor, and the influence of sample irregularities on the accuracy of measurements. The study employs both experimental testing, in which cuboidal and cylindrical polyurethane samples were subjected to sinusoidal excitation, and finite element modeling (FEM) to simulate the test conditions in sample without irregularities.

View Article and Find Full Text PDF

This study addresses the limitations of current tonometry techniques by exploring vibroacoustic properties for estimating intraocular pressure (IOP), a key diagnostic parameter for monitoring glaucoma-a significant risk factor for vision loss. Utilizing vivo porcine eyeballs, we investigated the relationship between IOP and the nonlinear vibration transfer function ratio (NVTFR). Through applying varying vibration levels and analyzing responses with transfer function analysis and univariate regression, we identified a strong negative correlation between NVTFR and IOP, evidenced by a Pearson correlation coefficient of -0.

View Article and Find Full Text PDF

The development of urbanization and the resulting expansion of residential and transport infrastructures pose new challenges related to ensuring comfort for city dwellers. The emission of transport vibrations and household noise reduces the quality of life in the city. To counteract this unfavorable phenomenon, vibration isolation is widely used to reduce the propagation of vibrations and noise.

View Article and Find Full Text PDF

Mechanistic Assessment of Cardiovascular State Informed by Vibroacoustic Sensors.

Sensors (Basel)

March 2024

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48103, USA.

Monitoring blood pressure, a parameter closely related to cardiovascular activity, can help predict imminent cardiovascular events. In this paper, a novel method is proposed to customize an existing mechanistic model of the cardiovascular system through feature extraction from cardiopulmonary acoustic signals to estimate blood pressure using artificial intelligence. As various factors, such as drug consumption, can alter the biomechanical properties of the cardiovascular system, the proposed method seeks to personalize the mechanistic model using information extracted from vibroacoustic sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!