It is widely accepted that the genetic divergence and reproductive incompatibility between closely related species and/or populations is often viewed as an important step toward speciation. In this study, sexual compatibility in crosses between the southern XS population and the northern TA population of the polyandrous cabbage beetle Colaphellus bowringi was investigated by testing their mating preferences, mating latency, copulation duration, and reproductive performances of post-mating. In choice mating experiments, the percentages of matings were significantly higher in intra-population crosses than in inter-population crosses. Both isolation index (I) and index of pair sexual isolation (IPSI ) indicated partial mating incompatibility or assortative mating in crosses between the two different geographical populations. In single pair mating experiments, XS females in inter-population crosses mated significantly later and copulated significantly shorter than those in intra-population crosses. However, TA females in inter-population crosses mated significantly earlier and copulated longer than those in intra-population crosses, suggesting that larger XS males may enhance heterotypic mating. The lifetime fecundity was highest in XS homotypic matings, lowest in TA homotypic matings, and intermediate in heterotypic matings between their parents. The inter-population crosses resulted in significantly lower egg hatching rate and shorter female longevity than intra-population crosses. These results demonstrated that there exist some incompatibilities in premating, postmating-prezygotic, and postzygotic stages between the southern XS population and northern TA population of the cabbage beetle Colaphellus bowringi.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-7917.12091DOI Listing

Publication Analysis

Top Keywords

intra-population crosses
16
inter-population crosses
16
cabbage beetle
12
beetle colaphellus
12
colaphellus bowringi
12
crosses
11
sexual compatibility
8
compatibility crosses
8
crosses southern
8
southern population
8

Similar Publications

This study focuses on estimation of the inter and intra population genetic variability of 6 duck populations. Microsatellite loci were used to assess the genetic variation and population structure of 6 duck populations under a conservation program in Poland. DNA polymorphism was assessed using 24 microsatellite markers and 50 individuals from each population.

View Article and Find Full Text PDF

Well-performing genomic prediction (GP) models for polygenic traits and molecular marker sets for oligogenic traits could be useful for identifying promising genetic resources in germplasm collections, setting core collections, and establishing molecular variety distinction. This study aimed at (i) defining GP models and key marker sets for predicting 15 agronomic or morphological traits in germplasm collections, (ii) verifying the GP model usefulness also for selection in breeding programs, (iii) investigating the consistency between molecular and phenotypic diversity patterns, and (iv) identifying genomic regions associated with to the target traits. The study was based on phenotyping data and over 41,000 genotyping-by-sequencing-generated SNP markers of 220 landraces or old cultivars belonging to a world germplasm collection and 11 modern cultivars.

View Article and Find Full Text PDF

A comprehensive overview of breeding strategy to improve phenotypic and quality traits in Jones.

Heliyon

August 2023

Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India.

is a high value perennial herb that grows at an altitude of 1000-3000 MASL in the Indian Himalayan Region and is used in the Ayurvedic, Unani and Chinese systems of medicine. The plant extracts and essential oil (EO) obtained from its roots are used in the pharmaceutical, aromatic and flavouring industries. On account of high global annual demand and lack of organized cultivation of this herb, it is mostly collected from the wild causing depletion of the natural populations and also leading to variable produce making it unsuitable for industrial use.

View Article and Find Full Text PDF

Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance.

Animal

July 2023

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China. Electronic address:

Heat stress is a major problem that constrains pig productivity. Understanding and identifying adaptation to heat stress has been the focus of recent studies, and the identification of genome-wide selection signatures can provide insights into the mechanisms of environmental adaptation. Here, we generated whole-genome re-sequencing data from six Chinese indigenous pig populations to identify genomic regions with selection signatures related to heat tolerance using multiple methods: three methods for intra-population analyses (Integrated Haplotype Score, Runs of Homozygosity and Nucleotide diversity Analysis) and three methods for inter-population analyses (Fixation index (F), Cross-population Composite Likelihood Ratio and Cross-population Extended Haplotype Homozygosity).

View Article and Find Full Text PDF

Programmed chromosomal inversions allow bacteria to generate intra-population genotypic and functional heterogeneity, a bet-hedging strategy important in changing environments. Some programmed inversions modify coding sequences, producing different alleles in several gene families, most notably in specificity-determining genes such as Type I restriction-modification systems, where systematic searches revealed cross phylum abundance. Yet, a broad, gene-independent, systematic search for gene-altering programmed inversions has been absent, and little is known about their genomic sequence attributes and prevalence across gene families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!