Theoretical and structural analysis of long C-C bonds in the adducts of polycyanoethylene and anthracene derivatives and their connection to the reversibility of Diels-Alder reactions.

Chemistry

Institut de Sciences et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg (France); Current address: Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG (The Netherlands).

Published: January 2014

X-ray structure determinations on four Diels-Alder adducts derived from the reactions of cyano- and ester-substituted alkenes with anthracene and 9,10-dimethylanthracene have shown the bonds formed in the adduction to be particularly long. Their lengths range from 1.58 to 1.62 Å, some of the longest known for Diels-Alder adducts. Formation of the four adducts is detectably reversible at ambient temperature and is associated with free energies of reaction ranging from -2.5 to -40.6 kJ  mol(-1). The solution equilibria have been experimentally characterised by NMR spectroscopy. Density-functional-theory calculations at the MPW1K/6-31+G(d,p) level with PCM solvation agree with experiment with average errors of 6 kJ  mol(-1) in free energies of reaction and structural agreement in adduct bond lengths of 0.013 Å. To understand more fully the cause of the reversibility and its relationship to the long adduct bond lengths, natural-bond-orbital (NBO) analysis was applied to quantify donor-acceptor interactions within the molecules. Both electron donation into the σ*-anti-bonding orbital of the adduct bond and electron withdrawal from the σ-bonding orbital are found to be responsible for this bond elongation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201303276DOI Listing

Publication Analysis

Top Keywords

adduct bond
12
diels-alder adducts
8
free energies
8
energies reaction
8
bond lengths
8
theoretical structural
4
structural analysis
4
analysis long
4
long c-c
4
c-c bonds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!