Rationale: Low-mass cut-off restrictions for injecting ions from external ion sources into high magnetic fields impose limitations for wide mass range analyses with Fourier transform ion cyclotron resonance (FTICR) instruments. Radio-frequency (RF)-only quadrupole ion guides (QIGs) with higher frequencies can be used to overcome low-mass cut-off in FTICR instruments.

Methods: RF signals (1.0 MHz to 10.0 MHz) were applied to QIGs to transfer externally generated ions from either electron ionization (EI) or electrospray ionization (ESI) sources into ICR cells of 9.4 T FTICR mass spectrometers. Efficiencies of QIGs were evaluated using externally generated ions from: EI of acetone, air, and perfluorotributylamine mixture, EI of gas chromatography (GC)-separated components of a standard sample mixture, and ESI of complex mixtures such as petroleum and fulvic acid samples.

Results: We were able to transfer ions with m/z as low as 26 from an external EI source into the ICR cell of a 9.4 T FTICR mass spectrometer and extend the operational low-mass range for ESI-FTICR analyses. High mass resolving power and mass measurement accuracy of GC/FTICR mass spectrometry were utilized to discriminate between oxygenated and non-oxygenated compounds in a 'Grob' sample. Ion losses based on SIMION ion trajectory predictions were consistent with experimental findings.

Conclusions: We demonstrated that the use of high-frequency QIGs can extend the operational lower m/z range for both external EI- and ESI-FTICR mass spectrometers. By considering both ICR and Mathieu equations of motions to describe ion trajectories, theoretical ion ejection thresholds (consistent with our experimental findings) could be predicted.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.6768DOI Listing

Publication Analysis

Top Keywords

mass spectrometers
12
high magnetic
8
fourier transform
8
ion
8
transform ion
8
ion cyclotron
8
cyclotron resonance
8
mass
8
low-mass cut-off
8
externally generated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!