Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation.

J Cell Sci

Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, Centre National de la Recherche Scientifique, Université Victor Segalen/Bordeaux II, F-33077 Bordeaux Cedex, France.

Published: February 2014

Mitochondria are double membrane-bounded organelles that form a dynamic tubular network. Mitochondria energetic functions depend on a complex internal architecture. Cristae, inner membrane invaginations that fold into the matrix space, are proposed to be the site of oxidative phosphorylation, reactions by which ATP synthase produces ATP. ATP synthase is also thought to have a role in crista morphogenesis. To date, the exploration of the processes regulating mitochondrial internal compartmentalization have been mostly limited to electron microscopy. Here, we describe ATP synthase localization in living yeast cells and show that it clusters as discrete inner membrane domains. These domains are dynamic within the mitochondrial network. They are impaired in mutants defective in crista morphology and partially overlap with the crista-associated MICOS-MINOS-MITOS complex. Finally, ATP synthase occupancy increases with the cellular demand for OXPHOS. Overall our data suggest that domains in which ATP synthases are clustered correspond to mitochondrial cristae. Being able to follow mitochondrial sub-compartments in living yeast cells opens new avenues to explore the mechanisms involved in inner membrane remodeling, an architectural feature crucial for mitochondrial activities.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.137141DOI Listing

Publication Analysis

Top Keywords

atp synthase
16
inner membrane
12
atp synthases
8
cellular demand
8
oxidative phosphorylation
8
living yeast
8
yeast cells
8
mitochondrial
6
atp
6
mitochondrial atp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!