The effects of class I PI3K inhibitor NVP-BKM120 on cell proliferation, cell cycle distribution, cellular apoptosis, phosphorylation of several proteins of the PI3K/AKT signaling pathway and the mRNA expression levels of HIF1-α, VEGF and MMP9 in the acquired gefitinib resistant cell line H1975 were investigated, and whether NVP-BKM120 can overcome the acquired resistance caused by the EGFR T790M mutation and the underlying mechanism were explored. MTT assay was performed to detect the effect of gefitinib, NVP-BKM120, NVP-BKM120 plus 1 μmol/L gefitinib on growth of H1975 cells. The distribution of cell cycle and apoptosis rate of H1975 cells were examined by using flow cytometry. The mRNA expression levels of tumor-related genes such as HIF1-α, VEGF and MMP9 were detected by using real-time quantitative PCR. Western blotting was used to detect the expression level of phosphorylated proteins in the PI3K/AKT signaling pathway, such as Ser473-p-AKT, Ser235/236-p-S6 and Thr70-p-4E-BP1, as well as total AKT, S6 and 4E-BP1. The results showed that the NVP-BKM120 could inhibit the growth of H1975 cells in a concentration-dependent manner, and H1975 cells were more sensitive to NVP-BKM120 than gefitinib (IC50:1.385 vs. 15.09 μmol/L respectively), whereas combination of NVP-BKM120 and gefitinib (1 μmol/L) did not show more obvious effect than NVP-BKM120 used alone on inhibition of cell growth (P>0.05). NVP-BKM120 (1 μmol/L) increased the proportion of H1975 cells in G0-G1 phase and the effect was concentration-dependent, and 2 μmol/L NVP-BKM120 promoted apoptosis of H1975 cells. There was no significant difference in the proportion of H1975 cells in G0-G1 phase and apoptosis rate between NVP-BKM120-treated alone group and NVP-BKM120 plus genfitinib (1 μmol/L)-treated group or between DMSO-treated control group and gefitinib (1 μmol/L)-treated alone group (P>0.05 for all). It was also found that the mRNA expression levels of these genes were down-regulated by NVP-BKM120 (1 μmol/L), and NVP-BKM120 (1 μmol/L) or NVP-BKM120 (1 μmol/L) plus gefitinib (1 μmol/L) obviously inhibited the activation of Akt, S6 and 4E-BP1 as compared with control group, but single use of gefitinib (1 μmol/L) exerted no significant effect. These data suggested that NVP-BKM120 can overcome gefitinib resistance in H1975 cells, and the combination of NVP-BKM120 and gefitinib did not have additive or synergistic effects. It was also concluded that NVP-BKM120 could overcome the acquired resistance to gefitinib by down-regulating the phosphorylated protein in PI3K/AKT signal pathways in H1975 cells, but it could not enhance the sensitivity of H1975 cells to gefitinib.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-013-1209-5DOI Listing

Publication Analysis

Top Keywords

h1975 cells
44
nvp-bkm120 μmol/l
20
nvp-bkm120
18
gefitinib
13
acquired resistance
12
h1975
12
mrna expression
12
expression levels
12
nvp-bkm120 overcome
12
nvp-bkm120 gefitinib
12

Similar Publications

A series of 2,4-disubstituted pyrimidine derivatives bearing 5-substituted-1,3,4 thidiazole were devised and synthesized based on the binding mode of the approved drug Osimertinib with the ATP competitive site of EGFR-L858R/T790M in order to increase selectivity towards double mutant EGFR and potent antitumor activity. Their cellular bioactivity and corresponding enzyme inhibition were studied, and it was revealed that several compounds had significant biological activity and selectivity when compared to the control compounds. One of the most promising compound 8, substantially suppressed the proliferation of H1975 cells and showed significant inhibition of double mutant EGFR-L858R/T790M TK with IC values of 0.

View Article and Find Full Text PDF

In recent decades, significant advancements have been achieved in non-small cell lung cancer (NSCLC) treatment. However, drug resistance, postoperative recurrence, distant metastasis, and other critical issues arise during NSCLC treatment. Natural products play a crucial role in the development of anti-tumor drugs.

View Article and Find Full Text PDF

REV7 is a multifunctional protein involved in the DNA damage response, cell cycle regulation, gene expression, or primordial germ cell maintenance. REV7 expression in tumor cells is associated with clinical aggressive features and chemoresistance in several human malignancies, however, the clinicopathological significance of REV7 in lung adenocarcinoma (LUAD) has not been studied yet. In this study, we investigated the significance of REV7 expression in LUAD using clinical materials and cell lines.

View Article and Find Full Text PDF

Background: Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are standard treatments for non-small cell lung cancer (NSCLC) patients with EGFR mutations; however, drug resistance limits their efficacy. Cytoskeleton-associated protein 4 (CKAP4) has been linked to cancer progression, but its role in EGFR-TKI resistance remains unclear.

Objective: This study investigates the clinical relevance of CKAP4 as a therapeutic target to overcome EGFR-TKI resistance in lung adenocarcinoma (LUAD) patients.

View Article and Find Full Text PDF

Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2.

Eur J Med Res

December 2024

Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China.

Background: The T790M mutation in the epidermal growth factor receptor (EGFR) gene is the primary cause of resistance to EGFR-tyrosine kinase inhibitor (TKI) therapy in non-small cell lung cancer (NSCLC) patients. Previous research demonstrated that certain traditional Chinese medicine (TCM) monomers exhibit anti-tumor effects against various malignancies. This study aims to investigate the potentials of shikonin screened from a TCM monomer library containing 1060 monomers in killing EGFR-T790M drug-resistant NSCLC cells and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!