Characterization of Golgi scaffold proteins and their roles in compartmentalizing cell signaling.

J Mol Histol

Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.

Published: August 2014

Subcellular compartmentalization has become an important theme in cell signaling. In particular, the Golgi apparatus (GA) plays a prominent role in compartmentalizing signaling cascades that originate at the plasma membrane or other organelles. To precisely regulate this process, cells have evolved a unique class of organizer proteins, termed "scaffold proteins". Sef, PAQR3, PAQR10 and PAQR11 are scaffold proteins that have recently been identified on the GA and are referred to as Golgi scaffolds. The major cell growth signaling pathways, such as Ras/MAPK, PI3K/AKT, insulin and VEGF (vascular endothelial growth factor), are tightly regulated spatially and temporally by these Golgi scaffolds to ensure a physiologically appropriate outcome. Here, we discuss the subcellular localization and characterization of the topology and functional domains of these Golgi scaffolds and summarize their roles in the compartmentalization of cell signaling. We also highlight the physiological and pathological roles of these Golgi scaffolds in tumorigenesis and developmental disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-013-9560-1DOI Listing

Publication Analysis

Top Keywords

golgi scaffolds
16
cell signaling
12
scaffold proteins
8
signaling
5
golgi
5
characterization golgi
4
golgi scaffold
4
proteins roles
4
roles compartmentalizing
4
cell
4

Similar Publications

Research towards regenerative dentistry focused on developing scaffold materials whose high performance induces cell adhesion support and guides tissue growth. An early study investigated the proliferation abilities and attachment of human periodontal ligament fibroblasts (HPLFs) on two bovine pericardium membranes with different thicknesses, 0.2 mm and 0.

View Article and Find Full Text PDF

The X-linked intellectual disability gene CUL4B is critical for memory and synaptic function.

Acta Neuropathol Commun

December 2024

The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Article Synopsis
  • Cullin 4B (CUL4B) is a protein linked to X-linked intellectual disability (XLID), with its mutations leading to brain dysfunction and impaired cognition.
  • Researchers used advanced single-nucleus RNA sequencing to study how CUL4B deficiency affects communication and gene expression among different brain cell types, finding significant changes that relate to synapse problems.
  • The study demonstrated that CUL4B-deficient mice exhibited synapse loss, abnormal synaptic structures, and decreased memory capabilities, highlighting the potential for targeted therapies to address synaptic issues and cognitive decline related to CUL4B mutations.
View Article and Find Full Text PDF

Carnosine is a naturally occurring dipeptide that has been advocated by some authors as an interesting scaffold for the development of potential therapeutic agents in view of the positive outcomes of its supplementation in animal models of human diseases. Its mode of action seems to depend on the quenching of toxic electrophiles, such as 4-hydroxynonenal (HNE). However, carnosine's bioavailability in humans is lower than that in other mammals.

View Article and Find Full Text PDF

Kinesins are microtubule-based motor proteins that play diverse cellular functions by regulating microtubule dynamics and intracellular transport in eukaryotes. The early branching kinetoplastid protozoan has an expanded repertoire of kinetoplastid-specific kinesins and orphan kinesins, many of which have unknown functions. We report here the identification of an orphan kinesin named KIN-G that plays an essential role in maintaining hook complex integrity and promoting Golgi biogenesis in .

View Article and Find Full Text PDF

Endoplasmic reticulum quality control is crucial for maintaining cellular homeostasis and adapting to stress conditions. Although several ER-phagy receptors have been identified, the collaboration between cytosolic and ER-resident factors in ER fragmentation and ER-phagy regulation remains unclear. Here, we perform a phenotype-based gain-of-function screen and identify a cytosolic protein, FKBPL, functioning as an ER-phagy regulator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!