Selenium‑enriched exopolysaccharides produced by Enterobacter cloacae Z0206 alleviate adipose inflammation in diabetic KKAy mice through the AMPK/SirT1 pathway.

Mol Med Rep

Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China.

Published: February 2014

Polysaccharides belong to a structurally diverse class of macromolecules, with the necessary flexibility for the precise regulatory mechanisms and high capacity for carrying biological information. On the basis of a previous study regarding the administration of selenium-enriched exopolysaccharides (Se-ECZ-EPS) produced by Enterobacter cloacae (E. cloacae) Z0206 which resulted in a reduction of blood glucose levels and showed significant anti-inflammatory and anti-diabetic effects, the present study was conducted to evaluate the effects and mechanism of EPS on the alleviation of fat inflammation in high-fat-diet (HFD) induced-diabetic KKAy mice. The HFD induced-diabetic KKAy mice were gavaged once daily with EPS (0.2 mg/g body weight) or distilled water, while the C57BL/6J mice were gavaged with distilled water. Six weeks later visceral adipose tissue (VAT) was collected for quantified polymerase chain reaction (qPCR) and western blot (WB) analysis. The results showed that following supplementation with EPS, interleukin (IL) 6, IL1β and tumor necrosis factor (TNF) α mRNA expression in VAT were significantly reduced, while Glut4, pAMPK and SirT1 protein expression were markedly increased when compared with KKAy mice gavaged with water. Furthermore, ATGL and HSL mRNA were also significantly decreased. Subsequently, 3T3-L1 adipocytes were treated with insulin to induce insulin resistance to determine the mechanism by which EPS affects inflammation. Following the treatment of adipocytes with 100 nM insulin for 8 h, IL6 and TNFα mRNA expression were significantly increased, while the content of glucose uptake and Glut4 protein expression were significantly decreased. When treated with 100 nM insulin and 0.1 mg/ml EPS, no significant change in IL6 and TNFα mRNA expression or glucose uptake were observed. However, when SirT1‑siRNA or AMPKα1-siRNA was transfected into the 3T3-L1 adipocytes prior to treatment with insulin and EPS, there was a significant increase in IL6 and TNFα mRNA abundance. In conclusion, VAT inflammation and lipolysis in HFD-induced KKAy mice were significantly decreased following EPS usage. Moreover, EPS may alleviate VAT inflammation primarily through the AMPK/SirT1 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2013.1859DOI Listing

Publication Analysis

Top Keywords

kkay mice
20
mice gavaged
12
mrna expression
12
il6 tnfα
12
tnfα mrna
12
produced enterobacter
8
enterobacter cloacae
8
cloacae z0206
8
ampk/sirt1 pathway
8
eps
8

Similar Publications

Many genetic and environmental factors are involved in the development and progression of diabetic kidney disease (DKD), and its pathology shows various characteristics. Animal models of DKD play an important role in elucidating its pathogenesis and developing new therapies. In this study, we investigated the pathophysiological features of two DKD animal models: db/db mice (background of hyperglycemia) and KK-Ay mice (background of hyperinsulinemia).

View Article and Find Full Text PDF

Fermented Rice Bran Mitigated the Syndromes of Type 2 Diabetes in KK- Mice Model.

Metabolites

November 2024

Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.

Diabetes is a devastating disease that causes millions of deaths. Fermented rice bran (FRB), made by fermenting rice bran with and a mixture of lactic acid bacteria, was hypothesized to b able to improve diabetes-related symptoms. This study aimed to investigate the effects of FRB supplementation in mitigating type 2 diabetes symptoms and identifying FRB bioactive compounds.

View Article and Find Full Text PDF

SREBP1 induction mediates long-term statins therapy related myocardial lipid peroxidation and lipid deposition in TIIDM mice.

Redox Biol

December 2024

Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China. Electronic address:

Statins therapy is efficacious in diminishing the risk of major cardiovascular events in diabetic patients. However, our research has uncovered a correlation between the prolonged administration of statins and an elevated risk of myocardial dysfunction in patients with type II diabetes mellitus (TIIDM). Here, we report the induction of sterol regulatory element-binding protein 1 (SREBP1) activation, associated lipid peroxidation, and the consequent diabetic myocardial dysfunction after statin treatment and explored the underlying mechanisms.

View Article and Find Full Text PDF

Background: Tangshenning (TSN) is a safe and effective formula to treat diabetic nephropathy (DN), and clinical studies have demonstrated that its therapeutic effects are related to oxidative stress improvements in patients. Herein, this study aims to explore the potential mechanism of how TSN alleviates diabetic renal tubular injury.

Methods: The ultrahigh pressure liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS) was used to identify the chemical composition and serum components of TSN.

View Article and Find Full Text PDF

Background: Modified Si-Miao granule (mSMG), a traditional Chinese medicine, is beneficial for T2DM and insulin resistance (IR), but the underlying mechanism remains unknown.

Methods: Using network pharmacology, we screened the compounds of mSMG and identified its targets and pathway on hepatic IR in T2DM. Using molecular docking, we identified the affinity between the compounds and hub target TNF-α.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!