A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Li ion dynamics in TiO2 anode materials with an ordered hierarchical pore structure--insights from ex situ NMR. | LitMetric

Li ion dynamics in TiO2 anode materials with an ordered hierarchical pore structure--insights from ex situ NMR.

Phys Chem Chem Phys

DFG Research Unit 1277 "Mobility of Lithium Ions in Solids" (TP 7), and Institute for Chemistry and Technology of Materials, Graz University of Technology Stremayrgasse 9, A-8010, Graz, Österreich.

Published: February 2014

Ex situ Nuclear Magnetic Resonance (NMR) measurements were carried out to study lithium ion dynamics in lithium intercalated mesoporous anatase (LixTiO2) serving as an anode material for rechargeable lithium-ion batteries. As has been shown recently, hierarchically ordered TiO2 shows excellent cycling performance and ensures a high lithium storage capacity. (7)Li spin-lattice relaxation NMR and stimulated echo NMR serve as a powerful combination to shed light on the Li hopping processes from an atomic-scale point of view. To determine atomic Li jump rates and microscopic activation energies temperature-variable SLR NMR measurements, in both the laboratory and rotating frame of reference, as well as mixing-time dependent spin-alignment echo NMR measurements were carried out. The results point to moderate Li diffusivities; however, in a lithium-ion cell this is compensated for by taking advantage of nm-structured materials with greatly reduced diffusion lengths. Importantly, although a phase transition from tetragonal symmetry to orthorhombic symmetry takes place at increased states of charge, the diffusion parameters and activation energies probed (0.4 to 0.5 eV) do depend weaker on Li content x than expected. Thus, despite the increased value of x, the evolution of the orthorhombic phase seems to support Li diffusivity rather than to affect the transport properties in a negative way. This interesting feature might be highly beneficial for the excellent cycling behavior observed recently.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp54586eDOI Listing

Publication Analysis

Top Keywords

nmr measurements
12
ion dynamics
8
measurements carried
8
excellent cycling
8
echo nmr
8
activation energies
8
nmr
6
dynamics tio2
4
tio2 anode
4
anode materials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!