Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids.

Nature

1] Department of Immunology, University of Washington, Seattle, Washington 98195, USA [2] Department of Microbiology, University of Washington, Seattle, Washington 98195, USA [3] Department of Medicine, University of Washington, Seattle, Washington 98195, USA.

Published: January 2014

The evolutionary survival of Mycobacterium tuberculosis, the cause of human tuberculosis, depends on its ability to invade the host, replicate, and transmit infection. At its initial peripheral infection site in the distal lung airways, M. tuberculosis infects macrophages, which transport it to deeper tissues. How mycobacteria survive in these broadly microbicidal cells is an important question. Here we show in mice and zebrafish that M. tuberculosis, and its close pathogenic relative Mycobacterium marinum, preferentially recruit and infect permissive macrophages while evading microbicidal ones. This immune evasion is accomplished by using cell-surface-associated phthiocerol dimycoceroserate (PDIM) lipids to mask underlying pathogen-associated molecular patterns (PAMPs). In the absence of PDIM, these PAMPs signal a Toll-like receptor (TLR)-dependent recruitment of macrophages that produce microbicidal reactive nitrogen species. Concordantly, the related phenolic glycolipids (PGLs) promote the recruitment of permissive macrophages through a host chemokine receptor 2 (CCR2)-mediated pathway. Thus, we have identified coordinated roles for PDIM, known to be essential for mycobacterial virulence, and PGL, which (along with CCR2) is known to be associated with human tuberculosis. Our findings also suggest an explanation for the longstanding observation that M. tuberculosis initiates infection in the relatively sterile environment of the lower respiratory tract, rather than in the upper respiratory tract, where resident microflora and inhaled environmental microbes may continually recruit microbicidal macrophages through TLR-dependent signalling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961847PMC
http://dx.doi.org/10.1038/nature12799DOI Listing

Publication Analysis

Top Keywords

human tuberculosis
8
permissive macrophages
8
respiratory tract
8
tuberculosis
6
macrophages
5
mycobacteria manipulate
4
manipulate macrophage
4
macrophage recruitment
4
recruitment coordinated
4
coordinated membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!