Extensive podocyte loss triggers a rapid parietal epithelial cell response.

J Am Soc Nephrol

Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts

Published: May 2014

Damage to podocytes is a central pathomechanism of proteinuric kidney disease. However, it is not fully understood how podocyte injury evolves to progressive glomerulopathies such as FSGS or collapsing glomerulopathy. In particular, the role of parietal epithelial cells remains controversial. Here, we show that adriamycin induces DNA damage and podocyte lysis in mice without evidence of autophagy, endoplasmic reticulum stress, or necroptosis. After extensive podocyte loss, activated parietal cells mediated tuft re-epithelialization by two distinct mechanisms. In the majority of glomeruli, vacuolized parietal epithelial cells attached to denuded glomerular basement membrane and, occasionally, disengaged from the parietal basement membrane. Less frequently, parietal epithelial cells covered the denuded visceral basement membrane via formation of proliferative pseudocrescents. Notably, "visceralized" parietal epithelial cells did not express vascular endothelial growth factor but upregulated hypoxia-inducible factor 1 expression. The presence of visceralized parietal epithelial cells in sclerosing and collapsing lesions in a kidney biopsy from a patient with diabetes underscores the human relevance of our findings. In conclusion, repopulation of the glomerular tuft by parietal cells may represent a compensatory response to extensive podocyte loss. Our results suggest, however, that visceralized parietal epithelial cells cannot induce revascularization of the hyalinized tuft, resulting in hypoxic cell death and irreversible destruction of the glomerulus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005306PMC
http://dx.doi.org/10.1681/ASN.2013070687DOI Listing

Publication Analysis

Top Keywords

parietal epithelial
28
epithelial cells
24
extensive podocyte
12
podocyte loss
12
basement membrane
12
parietal
10
cells
8
parietal cells
8
visceralized parietal
8
epithelial
7

Similar Publications

Computed Tomographic Anatomy of the Head in Cockatiel (Nymphicus hollandicus).

Vet Med Sci

March 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.

Background: Nowadays, computed tomography (CT) scanning is one of the most practical and precise diagnostic imaging methods that can be utilized to evaluate the head in birds.

Objectives: This study aimed to present the normal anatomical data of the head of the cockatiel (Nymphicus hollandicus) using the CT method. In this research, the features of this bird's head were investigated in terms of bones, joints, muscles, sinuses and other constituent tissues.

View Article and Find Full Text PDF

Autoimmune gastritis (AIG) is a chronic inflammatory condition characterized by immune-mediated destruction of gastric parietal cells, leading to oxyntic atrophy, achlorhydria, and hypergastrinemia. While AIG was historically linked to gastric adenocarcinoma and type I neuroendocrine tumors (NETs), recent evidence suggests the risk of adenocarcinoma in AIG is lower than previously believed, particularly in Helicobacter pylori (H. pylori)-negative patients.

View Article and Find Full Text PDF

Revealing VCAN as a Potential Common Diagnostic Biomarker of Renal Tubules and Glomerulus in Diabetic Kidney Disease Based on Machine Learning, Single-Cell Transcriptome Analysis and Mendelian Randomization.

Diabetes Metab J

January 2025

Diabetes Department of Integrated Chinese and Western Medicine, China National Center for Integrated Traditional Chinese and Western Medicine, China- Japan Friendship Hospital, Beijing, China.

Background: Diabetic kidney disease (DKD) is recognized as a significant complication of diabetes mellitus and categorized into glomerular DKDs and tubular DKDs, each governed by distinct pathological mechanisms and biomarkers.

Methods: Through the identification of common features observed in glomerular and tubular lesions in DKD, numerous differentially expressed gene were identified by the machine learning, single-cell transcriptome and mendelian randomization.

Results: The diagnostic markers versican (VCAN) was identified, offering supplementary options for clinical diagnosis.

View Article and Find Full Text PDF

The disproportionate risk for idiopathic proteinuric podocytopathies in Black people is explained, in part, by the presence of two risk alleles (G1 or G2) in the gene. The pathogenic mechanisms responsible for this genetic association remain incompletely understood. We analyzed glomerular RNASeq transcriptomes from patients with idiopathic nephrotic syndrome of which 72 had inferred African ancestry (AA) and 152 did not (noAA).

View Article and Find Full Text PDF

Human parietal epithelial cells as Trojan horses in albumin overload.

Sci Rep

January 2025

Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.

Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24 and CD133/2) or a pro-sclerotic (CD44) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!