Three-dimensional vortex wake structure of flapping wings in hovering flight.

J R Soc Interface

School of Mechanical Engineering, Purdue University, , West Lafayette, IN 47907, USA.

Published: February 2014

Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869174PMC
http://dx.doi.org/10.1098/rsif.2013.0984DOI Listing

Publication Analysis

Top Keywords

three-dimensional vortex
8
vortex wake
8
wake structure
8
flapping wings
8
vortex
8
wake
5
three-dimensional
4
structure
4
structure flapping
4
wings hovering
4

Similar Publications

The coherent structure of the energy cascade in isotropic turbulence.

Sci Rep

January 2025

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

The energy cascade, i.e. the transfer of kinetic energy from large-scale to small-scale flow motions, has been the cornerstone of turbulence theories and models since the 1940s.

View Article and Find Full Text PDF

This study used ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA) to analyze and compare choroidal blood flow and anatomical changes in eyes affected by central serous chorioretinopathy (CSC), pachychoroid neovasculopathy (PNV), and uncomplicated pachychoroid (UCP). The findings revealed distribution patterns of vortex veins across the three patient groups and provided initial findings insights into the origin of choroidal neovascularization (CNV) in PNV. A total of 44 patients with CSC, 38 with PNV, and 46 with UCP were included in the analysis.

View Article and Find Full Text PDF

Metrology with a twist: probing and sensing with vortex light.

Light Sci Appl

January 2025

School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa.

Optical metrology is a well-established subject, dating back to early interferometry techniques utilizing light's linear momentum through fringes. In recent years, significant interest has arisen in using vortex light with orbital angular momentum (OAM), where the phase twists around a singular vortex in space or time. This has expanded metrology's boundaries to encompass highly sensitive chiral interactions between light and matter, three-dimensional motion detection via linear and rotational Doppler effects, and modal approaches surpassing the resolution limit for improved profiling and quantification.

View Article and Find Full Text PDF

Helical Surface Relief Formation by Two-Photon Polymerization Reaction Using a Femtosecond Optical Vortex Beam.

J Phys Chem Lett

December 2024

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.

View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!