Expression and characterization of cynomolgus monkey cytochrome CYP3A4 in a novel human embryonic kidney cell-based mammalian system.

Drug Metab Dispos

Pharmaceutical Candidate Optimization (P.B., M.S.) and Applied Biotechnology (Si.S., K.G., P.K., S.K., Sa.S.), Biocon Bristol-Myers Squibb Research and Development Center (BBRC), Syngene International Limited, Plot No. 2 & 3, Bommasandra IV Phase, Bangalore, India; Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Bristol-Myers Squibb, Pennington, New Jersey (A.D.R.); and Bristol-Myers Squibb India Ltd. BBRC, Bangalore, India (M.R., S.M.).

Published: March 2014

Cynomolgus monkeys are a commonly used species in preclinical drug discovery, and have high genetic similarity to humans, especially for the drug-metabolizing cytochrome P450s. However, species differences are frequently observed in the metabolism of drugs between cynomolgus monkeys and humans, and delineating these differences requires expressed CYPs. Toward this end, cynomolgus monkey CYP3A4 (c3A4) was cloned and expressed in a novel human embryonic kidney 293-6E cell suspension system. Following the preparation of microsomes, the kinetic profiles of five known human CYP3A4 (h3A4) substrates (midazolam, testosterone, terfenadine, nifedipine, and triazolam) were determined. All five substrates were found to be good substrates of c3A4, although some differences were observed in the Km values. Overall, the data suggest a strong substrate similarity between c3A4 and h3A4. Additionally, c3A4 exhibited no activity against non-h3A4 probe substrates, except for a known human CYP2D6 substrate (bufuralol), which suggests potential metabolism of human cytochrome CYP2D6-substrates by c3A4. Ketoconazole and troleandomycin showed similar inhibitory potencies toward c3A4 and h3A4, whereas non-h3A4 inhibitors did not inhibit c3A4 activity. The availability of a c3A4 preparation, in conjunction with commercially available monkey liver microsomes, will support further characterization of the cynomolgus monkey as a model to assess CYP3A-dependent clearance and drug-drug interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.113.055491DOI Listing

Publication Analysis

Top Keywords

cynomolgus monkey
12
characterization cynomolgus
8
novel human
8
human embryonic
8
embryonic kidney
8
cynomolgus monkeys
8
c3a4
8
c3a4 h3a4
8
cynomolgus
5
human
5

Similar Publications

A simple LC-MS/MS assay for the quantification of E6011, a novel anti-fractalkine monoclonal antibody, in cynomolgus monkey serum - comparison with ligand binding assay.

J Pharm Biomed Anal

December 2024

Global Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd., Tokodai 5-1-3, Tsukuba-shi, Ibaraki 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. Electronic address:

E6011 is a monoclonal antibody that is currently under development for the treatment of rheumatoid arthritis. While ligand binding assays (LBAs) are typically employed for the determination of therapeutic antibodies, ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) represents an alternative platform. E6011 in monkey serum was treated with ammonium sulfate to obtain pellets for subsequent processing.

View Article and Find Full Text PDF

Lymphocryptoviruses (LCVs) are ubiquitous gamma-herpesviruses that establish life-long infections in both humans and non-human primates (NHPs). In immunocompromised hosts, LCV infections are commonly associated with B cell disorders and malignancies such as lymphoma. In this study, we evaluated simian LCV-encoded small microRNAs (miRNAs) present in lymphoblastoid cell lines (LCLs) derived from a Mauritian cynomolgus macaque () with cyLCV-associated post-transplant lymphoproliferative disease (PTLD) as well as the viral miRNAs expressed in a baboon () LCL that harbors CeHV12.

View Article and Find Full Text PDF

Delta-like 1 homolog (DLK1), a non-canonical Notch ligand, is highly expressed in various malignant tumors, especially in hepatocellular carcinoma (HCC). CBA-1205 is an afucosylated humanized antibody against DLK1 with enhanced antibody-dependent cellular cytotoxicity (ADCC). The binding characteristics of CBA-1205 were analyzed by enzyme-linked immunosorbent assay and fluorescence-activated cell sorting assay.

View Article and Find Full Text PDF

Ligand-binding assays validated for quantitative bioanalysis of a novel antibody-drug conjugate in monkey serum and related application in a nonclinical study.

J Pharmacol Toxicol Methods

December 2024

Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China. Electronic address:

Background: Antibody-drug conjugates (ADCs) are an emerging class of targeted therapeutics and are receiving growing attention in the pharmaceutical field. Here we aimed to validate two ligand binding assays for the quantitation of GQ1001, an ADC made of Trastuzumab site-specifically conjugated with DM1, in cynomolgus monkey serum, and then apply the validated assays to a nonclinical study.

Methods: The quantitative methods for conjugated GQ1001 and total GQ1001 were validated against regulatory guidance documents on bioanalytical method validation under a Good Laboratory Practice (GLP)-compliant environment.

View Article and Find Full Text PDF

Introduction: The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!