MicroRNAs (miRNAs) are indispensable regulators for development and defense in eukaryotes. However, the miRNA species have not been explored for rice (Oryza sativa) immunity against the blast fungus Magnaporthe oryzae, the most devastating fungal pathogen in rice production worldwide. Here, by deep sequencing small RNA libraries from susceptible and resistant lines in normal conditions and upon M. oryzae infection, we identified a group of known rice miRNAs that were differentially expressed upon M. oryzae infection. They were further classified into three classes based on their expression patterns in the susceptible japonica line Lijiangxin Tuan Hegu and in the resistant line International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake that contains a single resistance gene locus, Pyricularia-Kanto 51-m (Pikm), within the Lijiangxin Tuan Hegu background. RNA-blot assay of nine of them confirmed sequencing results. Real-time reverse transcription-polymerase chain reaction assay showed that the expression of some target genes was negatively correlated with the expression of miRNAs. Moreover, transgenic rice plants overexpressing miR160a and miR398b displayed enhanced resistance to M. oryzae, as demonstrated by decreased fungal growth, increased hydrogen peroxide accumulation at the infection site, and up-regulated expression of defense-related genes. Taken together, our data indicate that miRNAs are involved in rice immunity against M. oryzae and that overexpression of miR160a or miR398b can enhance rice resistance to the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912081 | PMC |
http://dx.doi.org/10.1104/pp.113.230052 | DOI Listing |
Plants (Basel)
January 2025
College of Agriculture and Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating -triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Engineering, University of Chittagong, Chattogram, Bangladesh.
Rice blast, caused by Magnaporthe oryzae, is one of the most destructive fungal diseases in rice, resulting in major economic losses worldwide. Genetic and genomic studies have identified key genes and proteins, such as AvrPik variants and MAX proteins, that are crucial for the pathogen's virulence. These effector proteins interact with specific alleles of the Pik gene family on rice chromosome 11, modulating the host's immune response.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
Background: HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a nucleotide-binding leucine-rich repeat (NLR) protein functioning as a recognition hub to initiate effector-triggered immunity against bacterial pathogens. To initiate defense, ZAR1 associates with different HOPZ-ETI-DEFICIENT 1 (ZED1)-Related Kinases (ZRKs) to form resistosomes to indirectly perceive effector-induced perturbations. Few studies have focused on the phylogenomic characteristics of ZAR1 and ZRK immune gene families and their evolutionary relationships.
View Article and Find Full Text PDFLoss of anticancer NK cell function in AML patients is associated with fatal disease progression and remains poorly understood. Here, we demonstrate that AML-blasts isolated from patients rapidly inhibit NK cell function and escape NK cell-mediated killing. Transcriptome analysis of NK cells exposed to AML-blasts revealed increased CREM expression and transcriptional activity, indicating enhanced cAMP signalling, confirmed by uniform production of the cAMP-inducing prostanoid PGE2 by all AML-blast isolates from patients.
View Article and Find Full Text PDFBiomarkers
January 2025
Pediatric Intensive Care Unit, Hospital Sant Joan de Déu-University of Barcelona, Barcelona, Spain.
PurposeChimeric antigen receptor (CAR) T-cell CD19 therapy has changed the treatment paradigm for patients with relapsed/refractory B-cell acute lymphoblastic leukemia. It is frequently associated with potentially severe toxicities: cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and admission to PICU is often required. Some biomarkers seem to correlate with CRS severity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!