Proper copper (Cu) homeostasis is required by living organisms to maintain essential cellular functions. In the model plant Arabidopsis (Arabidopsis thaliana), the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7) transcription factor participates in reprogramming global gene expression during Cu insufficiency in order to improve the metal uptake and prioritize its distribution to Cu proteins of major importance. As a consequence, spl7 null mutants show morphological and physiological disorders during Cu-limited growth, resulting in lower fresh weight, reduced root elongation, and chlorosis. On the other hand, the Arabidopsis KIN17 homolog belongs to a well-conserved family of essential eukaryotic nuclear proteins known to be stress activated and involved in DNA and possibly RNA metabolism in mammals. In the study presented here, we uncovered that Arabidopsis KIN17 participates in promoting the Cu deficiency response by means of a direct interaction with SPL7. Moreover, the double mutant kin17-1 spl7-2 displays an enhanced Cu-dependent phenotype involving growth arrest, oxidative stress, floral bud abortion, and pollen inviability. Taken together, the data presented here provide evidence for SPL7 and KIN17 protein interaction as a point of convergence in response to both Cu deficiency and oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912109PMC
http://dx.doi.org/10.1104/pp.113.228239DOI Listing

Publication Analysis

Top Keywords

squamosa promoter-binding
8
promoter-binding protein-like7
8
arabidopsis kin17
8
oxidative stress
8
arabidopsis
5
conserved kin17
4
kin17 curved
4
curved dna-binding
4
dna-binding domain
4
domain protein
4

Similar Publications

Article Synopsis
  • The study focused on how poplar adventitious roots (ARs) change color due to interaction with fungal canker pathogens, revealing the mechanisms behind pigment production and metabolomic changes.
  • An increase in the synthesis of pigments, especially cyanidin-3-O-glucoside, was observed, along with the discovery that sunlight exposure alters metabolic pathways related to flavonoid synthesis in these roots.
  • Key genes involved in the coloration and biosynthesis were found to be upregulated or downregulated depending on light conditions, indicating a complex response of poplar trees to pathogen infection and environmental factors.
View Article and Find Full Text PDF

Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp.

New Phytol

December 2024

Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil.

Article Synopsis
  • The study investigates how the age-related microRNA miR156 influences the development of extrafloral nectaries (EFNs) in two species of passion flower.
  • Results show that manipulation of miR156 affects both leaf maturation and EFN formation, with overexpression leading to smaller and fewer EFNs, while reduced activity results in larger EFNs in one species.
  • This research highlights a connection between miR156 activity, nectar sugar profiles, and the ecological interactions between EFNs and ants, underscoring the role of the miR156/SPL module in regulating these traits based on leaf age.
View Article and Find Full Text PDF

Transcription factors CpSPL5 and CpSPL8 negatively regulate salt tolerance in Codonopsis pilosula by inhibiting SOS pathway.

Plant J

December 2024

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, China.

Environmental stresses such as salt and drought severely affect plant growth and development. SQUAMOSA-promoter binding protein-like (SPL) transcription factors (TFs) play critical roles in the regulation of diverse processes; however, reports describing the SPL regulation of plant responses to abiotic stress are relatively few. In this study, two stress-responsive TFs from Codonopsis pilosula (CpSPL5 and CpSPL8) are reported, which confer salt stress sensitivity.

View Article and Find Full Text PDF

The maize gene encoding an SBP transcription factor confers osmotic resistance in transgenic .

Front Plant Sci

November 2024

Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.

Among the major abiotic stresses, salt and drought have considerably affected agricultural development globally by interfering with gene expression profiles and cell metabolism. Transcription factors play crucial roles in activating or inhibiting the expression of stress-related genes in response to abiotic stress in plants. In this study, the Zea mays L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!