Salinity is a major abiotic stress affecting plant growth and development. Understanding the molecular mechanisms of salt response and defense in plants will help in efforts to improve the salt tolerance of crops. Brachypodium distachyon is a new model plant for wheat, barley, and several potential biofuel grasses. In the current study, proteome and phosphoproteome changes induced by salt stress were the focus. The Bd21 leaves were initially treated with salt in concentrations ranging from 80 to 320 mm and then underwent a recovery process prior to proteome analysis. A total of 80 differentially expressed protein spots corresponding to 60 unique proteins were identified. The sample treated with a median salt level of 240 mm and the control were selected for phosphopeptide purification using TiO2 microcolumns and LC-MS/MS for phosphoproteome analysis to identify the phosphorylation sites and phosphoproteins. A total of 1509 phosphoproteins and 2839 phosphorylation sites were identified. Among them, 468 phosphoproteins containing 496 phosphorylation sites demonstrated significant changes at the phosphorylation level. Nine phosphorylation motifs were extracted from the 496 phosphorylation sites. Of the 60 unique differentially expressed proteins, 14 were also identified as phosphoproteins. Many proteins and phosphoproteins, as well as potential signal pathways associated with salt response and defense, were found, including three 14-3-3s (GF14A, GF14B, and 14-3-3A) for signal transduction and several ABA signal-associated proteins such as ABF2, TRAB1, and SAPK8. Finally, a schematic salt response and defense mechanism in B. distachyon was proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916659 | PMC |
http://dx.doi.org/10.1074/mcp.M113.030171 | DOI Listing |
mBio
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
Phages demonstrate remarkable promise as antimicrobial agents against antibiotic-resistant bacteria. However, the emergence of phage-resistant strains poses challenges to their effective application. In this paper, we presented the isolation of a phage adaptive mutant that demonstrated enhanced and sustained antibacterial efficacy through the co-evolution of () 111-2 and phage ZX1Δint .
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Biodiversity Studies and Bioeducation, University of Lodz, Faculty of Biology and Environmental Protection, Banacha 1/3, Lodz 90-237, Poland.
There is a growing body of evidence that urbanization can affect body condition and immune function in wild birds, although these effects may be complex and taxa-specific. Here, we assessed the effects of urbanization on body condition (size-corrected body mass and haemoglobin concentration) and innate immune defences (haemolysis-haemagglutination assay, haptoglobin concentration and bacterial killing assay) in 136 Eurasian coots () from three urban and three non-urban populations across Poland. We also quantified the heterophil to lymphocyte ratio to control for the potential effect of physiological stress on immune defences.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
Biological invasions can disrupt the close and longstanding coevolved relationships between host and parasites. At the same time, the shifting selective forces acting on demography during invasion can result in rapid evolution of traits in both host and parasite. Hosts at the invasion front may reduce investment into costly immune defences and redistribute those resources to other fitness-enhancing traits.
View Article and Find Full Text PDFCancer Manag Res
January 2025
School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
Background: Cancer immunotherapy is an advanced therapeutic approach that harnesses the body's immune system to target and eliminate tumor cells. Traditional Chinese medicine (TCM), with a history rooted in centuries of clinical practice, plays a crucial role in enhancing immune responses, alleviating cancer-related symptoms, and reducing the risks of infections and complications in cancer patients.
Methodology: This review systematically examines the current literature on TCM-based formulations in cancer immunotherapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!