Given the importance of gamma oscillations in normal and disturbed cognition, there has been growing interest in their developmental trajectory. In the current study, age-related changes in sensory cortical gamma were studied using the auditory steady-state response (ASSR), indexing cortical activity entrained to a periodic auditory stimulus. A large sample (n = 188) aged 8-22 years had electroencephalography recording of ASSR during 20-, 30-, and 40-Hz click trains, analyzed for evoked amplitude, phase-locking factor (PLF) and cross-frequency coupling (CFC) with lower frequency oscillations. Both 40-Hz evoked power and PLF increased monotonically from 8 through 16 years, and subsequently decreased toward ages 20-22 years. CFC followed a similar pattern, with strongest age-related modulation of 40-Hz amplitude by the phase of delta oscillations. In contrast, the evoked power, PLF and CFC for the 20- and 30-Hz stimulation were distinct from the 40-Hz condition, with flat or decreasing profiles from childhood to early adulthood. The inverted U-shaped developmental trajectory of gamma oscillations may be consistent with interacting maturational processes-such as increasing fast GABA inhibition that enhances gamma activity and synaptic pruning that decreases gamma activity-that may continue from childhood through to adulthood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428298 | PMC |
http://dx.doi.org/10.1093/cercor/bht341 | DOI Listing |
Commun Biol
January 2025
Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.
View Article and Find Full Text PDFNeuron
January 2025
State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China. Electronic address:
Gamma-band oscillations (GBOs) in the primary somatosensory cortex (S1) play key roles in nociceptive processing. Yet, one crucial question remains unaddressed: what neuronal mechanisms underlie nociceptive-evoked GBOs? Here, we addressed this question using a range of somatosensory stimuli (nociceptive and non-nociceptive), neural recording techniques (electroencephalography in humans and silicon probes and calcium imaging in rodents), and optogenetics (alone or simultaneously with electrophysiology in mice). We found that (1) GBOs encoded pain intensity independent of stimulus intensity in humans, (2) GBOs in S1 encoded pain intensity and were triggered by spiking of S1 interneurons, (3) parvalbumin (PV)-positive interneurons preferentially tracked pain intensity, and critically, (4) PV S1 interneurons causally modulated GBOs and pain-related behaviors for both thermal and mechanical pain.
View Article and Find Full Text PDFUnlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.
View Article and Find Full Text PDFInt J Geriatr Psychiatry
January 2025
Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!