AI Article Synopsis

  • Rad GTPase serves as a negative regulator of calcium channel function in heart cells; its depletion enhances calcium signaling without causing heart enlargement.
  • In experiments with mice lacking Rad, calcium channel activity was significantly increased, leading to improved heart muscle contractions and elevated calcium levels.
  • The study suggests that inhibiting Rad could be a promising strategy for treating heart conditions related to calcium handling, as it mimics some effects of beta-adrenergic stimulation while avoiding unwanted heart growth.

Article Abstract

Background: The small GTPase Rad is a negative regulator of voltage-dependent L-type calcium channel current (ICaL); however, the effects of Rad ablation on cardiomyocyte function are unknown. The objective of this study is to test the hypothesis that Rad-depletion causes positive inotropic effects without inducing cardiac hypertrophy.

Methods And Results: Ventricular myocytes from adult Rad(-/-) mice were isolated and evaluated by patch-clamp recordings for I(Ca,L) and action potentials, Ca(2+) transients, and sarcomere shortening. Maximum I(CaL) is elevated in Rad(-/-) (maximal conductance 0.35 ± 0.04 picoSiemens/picoFarad (pS/pF) wild-type; 0.61 ± 0.14 pS/pF Rad(-/-)), decay kinetics are faster, and I(Ca,L) activates at lower voltages (activation midpoint -7.2 ± 0.6 wild-type; -11.7 ± 0.9 Rad(-/-)) mimicking effects of β-adrenergic receptor stimulation. Diastolic and twitch calcium are elevated in Rad(-/-) (F340/380: 1.03 diastolic and 0.35 twitch for wild-type; 1.47 diastolic and 0.736 twitch for Rad(-/-)) and sarcomere shortening is enhanced (4.31% wild-type; 14.13% Rad(-/-)) at lower pacing frequencies. Consequentially, frequency-dependence of Ca(2+) transients is less in Rad(-/-), and the frequency dependence of relaxation is also blunted. In isolated working hearts, similar results were obtained; chiefly, +dP/dt was elevated at baseline and developed pressure was relatively nonresponsive to acute β-adrenergic receptor stimulation. In single cells, at subphysiological frequencies, nonstimulated calmodulin-dependent protein kinase-sensitive calcium release is observed. Remarkably, Rad(-/-) hearts did not show hypertrophic growth despite elevated levels of diastolic calcium.

Conclusions: This study demonstrates that the depletion of Rad GTPase is equivalent to sympathomimetic β-adrenergic receptor, without stimulating cardiac hypertrophy. Thus, targeting Rad GTPase is a novel potential therapeutic target for Ca(2+)-homeostasis-driven positive inotropic support of the heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886777PMC
http://dx.doi.org/10.1161/JAHA.113.000459DOI Listing

Publication Analysis

Top Keywords

rad gtpase
12
β-adrenergic receptor
12
rad-/-
9
l-type calcium
8
calcium channel
8
channel current
8
positive inotropic
8
ca2+ transients
8
sarcomere shortening
8
elevated rad-/-
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!