The photochemistry of organic pollutants has received increasing attention in ice and snow. In this work, the photoconversion of gamma-hexachlorocyclohexane (γ-HCH) under UV irradiation was investigated in water, snow and ice. The photoconversion rate, products and mechanisms were inspected, and the effect of inorganic ions (NO2(-), NO3(-), HCO3(-) and Fe(2+)) was discussed. The results showed that γ-HCH could be photoconverted in water, snow and ice, with the photoconversion rate being fastest in snow, and slowest in ice. All photoconversion could be described by the first-order kinetics model. In water, snow and ice, the common photoproducts of γ-HCH were alpha-hexachlorocyclohexane (α-HCH) and pentachlorocyclohexene. α-HCH was generated by a change in the bonding of a chlorine atom in γ-HCH; pentachlorocyclohexene was generated by the removal of a molecule of chlorine hydride from a molecule of γ-HCH. Different concentrations of NO2(-), NO3(-) and HCO3(-) all inhibited the photoconversion of γ-HCH, and the inhibition effect decreased with increasing concentrations of NO2(-) and NO3(-), but increased with the increasing concentrations of HCO3(-). Different concentrations of Fe(2+) promoted the photoconversion of γ-HCH in water and ice, but had little effect in snow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2013.536 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!